Elements: Software: Autonomous, Robust, and Optimal In-Silico Experimental Design Platform for Accelerating Innovations in Materials Discovery
要素:软件:用于加速材料发现创新的自主、稳健和优化的计算机实验设计平台
基本信息
- 批准号:1835690
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accelerating the development of novel materials that have desirable properties is a critical challenge as it can facilitate advances in diverse fields across science, engineering, and medicine with significant contributions to economic growth. For example, the US Materials Genome Initiative calls for cutting the time for bringing new materials from discovery to deployment by half at a fraction of the cost, by integrating experiments, computer simulations, and data analytics. However, the current prevailing practice in materials discovery relies on trial-and-error experimental campaigns and/or high-throughput screening approaches, which cannot efficiently explore the huge design space to develop materials with the targeted properties. Furthermore, measurements of material composition, structure, and properties often contain considerable errors due to technical limitations in materials synthesis and characterization, making this exploration even more challenging. This project aims to develop a software platform for robust autonomous materials discovery that can shift the current trial-and-error practice to an informatics-driven one that can potentially expedite the discovery of novel materials at substantially reduced cost and time. Throughout the project, the PI and Co-PIs will mentor students and equip them with the skills necessary to tackle interdisciplinary problems that involve materials science, computing, optimization, and artificial intelligence. Research findings in the project will be incorporated into the courses taught by the PI and Co-PIs, thereby enriching the learning experience of students.The objective of this project is to develop an effective in-silico experimental design platform to accelerate the discovery of novel materials. The platform will be built on optimal Bayesian learning and experimental design methodologies that can translate scientific principles in materials, physics, and chemistry into predictive models, in a way that takes model and data uncertainty into account. The optimal Bayesian experimental design framework will enable the collection of smart data that can help exploring the material design space efficiently, without relying on slow and costly trial-and-error and/or high-throughput screening approaches. The developed methodologies will be integrated into MSGalaxy, a modular scientific workflow management system, resulting in an accessible, reproducible, and transparent computational platform for accelerated materials discovery that allows easy and flexible customization as well as synergistic contributions from researchers across different disciplines.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering and the Division of Materials Research in the Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加速具有理想特性的新型材料的开发是一个至关重要的挑战,因为它可以促进科学,工程和医学各种领域的进步,并为经济增长做出了重大贡献。例如,美国材料基因组倡议要求通过整合实验,计算机模拟和数据分析,以减少从发现到部署的新材料的时间。但是,当前的材料发现中的主要实践依赖于试验实验活动和/或高通量筛选方法,这些筛选方法无法有效地探索具有目标特性的巨大设计空间,以开发材料。此外,由于材料合成和表征的技术限制,材料组成,结构和性质的测量通常包含相当大的错误,从而使这种探索更具挑战性。该项目旨在开发一个软件平台,以发现强大的自主材料发现,该计划可以将当前的试用练习转移到以信息学为导向的驱动器的范围内,该实践可能会以大幅减少的成本和时间来加快新颖材料的发现。在整个项目中,PI和Co-Pis将指导学生,并为他们提供解决涉及材料科学,计算,优化和人工智能的跨学科问题所需的技能。该项目中的研究结果将纳入PI和Co-Pis教授的课程中,从而丰富了学生的学习经验。该项目的目的是开发一个有效的内部实验设计平台,以加速发现新型材料。该平台将基于最佳的贝叶斯学习和实验设计方法,这些方法可以将材料,物理和化学中的科学原理转化为预测模型,以将模型和数据不确定性考虑在内。最佳的贝叶斯实验设计框架将使可以收集智能数据,这些数据可以有助于有效地探索材料设计空间,而无需依靠缓慢且昂贵的试验和/或高通量筛选方法。 The developed methodologies will be integrated into MSGalaxy, a modular scientific workflow management system, resulting in an accessible, reproducible, and transparent computational platform for accelerated materials discovery that allows easy and flexible customization as well as synergistic contributions from researchers across different disciplines.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering and the Division of Materials Research in the该奖项反映了NSF的法定任务,并被认为是使用基金会的知识分子优点和更广泛的影响评论标准,这是值得支持的。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microstructure classification in the unsupervised context
无监督环境下的微观结构分类
- DOI:10.1016/j.actamat.2021.117434
- 发表时间:2022
- 期刊:
- 影响因子:9.4
- 作者:Kunselman, Courtney;Sheikh, Sofia;Mikkelsen, Madalyn;Attari, Vahid;Arróyave, Raymundo
- 通讯作者:Arróyave, Raymundo
On the Importance of Microstructure Information in Materials Design: PSP vs PP
- DOI:10.1016/j.actamat.2021.117471
- 发表时间:2021-11
- 期刊:
- 影响因子:9.4
- 作者:Abhilash Molkeri;Danial Khatamsaz;Richard Couperthwaite;Jaylen James;R. Arróyave;D. Allaire;Ankit Srivastava
- 通讯作者:Abhilash Molkeri;Danial Khatamsaz;Richard Couperthwaite;Jaylen James;R. Arróyave;D. Allaire;Ankit Srivastava
Bayesian Active Learning by Soft Mean Objective Cost of Uncertainty
通过软平均客观不确定性成本进行贝叶斯主动学习
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhao, Guang;Dougherty, Edward;Yoon, Byung-Jun;Alexander, Francis J.;Qian, Xiaoning
- 通讯作者:Qian, Xiaoning
Optimal Experimental Design for Uncertain Systems Based on Coupled Differential Equations
- DOI:10.1109/access.2021.3071038
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.9
- 作者:Hong, Youngjoon;Kwon, Bongsuk;Yoon, Byung-Jun
- 通讯作者:Yoon, Byung-Jun
Accelerating Optimal Experimental Design for Robust Synchronization of Uncertain Kuramoto Oscillator Model Using Machine Learning
- DOI:10.1109/tsp.2021.3130967
- 发表时间:2021-01-01
- 期刊:
- 影响因子:5.4
- 作者:Woo, Hyun-Myung;Hong, Youngjoon;Yoon, Byung-Jun
- 通讯作者:Yoon, Byung-Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Byung-Jun Yoon其他文献
Byung-Jun Yoon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Byung-Jun Yoon', 18)}}的其他基金
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2016)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2016)
- 批准号:
1649426 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Models and Algorithms for Comparative Analysis of Biological Networks
职业:生物网络比较分析的模型和算法
- 批准号:
1149544 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
面向软件风险的船舶自主航行多方控制权切换风险建模方法研究
- 批准号:52201408
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向软件风险的船舶自主航行多方控制权切换风险建模方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自主机器人软件的伴随行为理论及关键软件技术
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
自主机器人软件的伴随行为理论及关键软件技术
- 批准号:62172426
- 批准年份:2021
- 资助金额:59.00 万元
- 项目类别:面上项目
基于低维纳米材料热力学性质预测的自主大规模高性能计算软件平台构建
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
- 批准号:
10717598 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Autonomous Navigating Robot for Detecting Falls and Risk of Falls in Nursing Home Residents with Alzheimer's Disease /ADRD
用于检测患有阿尔茨海默病/ADRD 的疗养院居民跌倒和跌倒风险的自主导航机器人
- 批准号:
10698704 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
CSR: Medium: Attention-Driven Software Architecture for Integrated Perception and Planning in Autonomous Agents
CSR:中:用于自主代理中集成感知和规划的注意力驱动软件架构
- 批准号:
2312395 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Next Generation Software-defined Intelligent Radio Access Network (SIRAN) - Leveraging Deep Learning for Autonomous and Intelligent Service Provisioning
下一代软件定义智能无线接入网络 (SIRAN) - 利用深度学习实现自主和智能服务提供
- 批准号:
RGPIN-2019-06348 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual