Representations and Rigidity

表述和刚性

基本信息

  • 批准号:
    1812397
  • 负责人:
  • 金额:
    $ 25.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

A three-dimensional manifold is locally modelled on the space in which we live, but globally it can be quite different. Such manifolds and their higher-dimensional variants have proved to be astonishingly important, arising in many branches of mathematics and physics. Recently, study of these manifolds has seen a period of remarkable transformation, with progress made by understanding symmetries of the manifolds and the related so-called "covering spaces." These are succinctly encoded by a purely algebraic object known as the fundamental group. The interplay between the fundamental group and the manifold is at the center of this research project. The project aims to better understand more general groups in addition to those arising from manifolds. Recent work has focused on the longstanding question of how one might recognize various classes of groups from "local data" and on trying to reconstitute the group as global data.This project is focused on representations, in various settings, of groups arising in low-dimensional geometry and topology (e.g. free groups, surface groups, and Kleinian groups). The project addresses questions of distinguishing such groups in the setting of finitely-generated residually finite groups by their profinite completions. Remarkably, the case of the free group is still open and continues to provide focus for work in this direction. The project also addresses connections with number theory, algebraic geometry, mapping class groups, and the topology of higher dimensional hyperbolic manifolds. Among other objectives is a better understanding of the arithmetic of canonical components of character varieties of knot groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三维流形在我们所居住的空间中局部建模,但在全局范围内它可能有很大不同。 事实证明,这种流形及其高维变体非常重要,出现在数学和物理学的许多分支中。最近,这些流形的研究经历了一段显着的转变,在理解流形的对称性和相关的所谓“覆盖空间”方面取得了进展。 这些由称为基本群的纯代数对象简洁地编码。基本群和流形之间的相互作用是该研究项目的中心。该项目旨在更好地理解除了流形产生的群之外的更一般的群。最近的工作集中在一个长期存在的问题上,即如何从“本地数据”中识别不同类别的群体,并尝试将群体重建为全球数据。该项目的重点是在各种环境中对低水平群体中产生的群体进行表征。维度几何和拓扑(例如自由群、表面群和克莱因群)。该项目解决了在有限生成的残差有限群的设置中通过它们的有限完成来区分这些群的问题。值得注意的是,自由团体的案件仍然悬而未决,并继续为这一方向的工作提供焦点。该项目还解决了与数论、代数几何、映射类群和高维双曲流形拓扑的联系。其他目标之一是更好地理解结组字符变体的规范组成部分的算术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequences of high rank lattices with large systole containing a fixed genus surface group
包含固定属表面群的具有大收缩期的高阶晶格序列
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations
使用心肌肌钙蛋白浓度诊断心肌梗死的机器学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Doudesis;K. K. Lee;J. Boeddinghaus;A. Bularga;A. Ferry;C. Tuck;M. Lowry;P. Lopez‐Ayala;T. Nestelberger;L. Koechlin;M. Bernabeu;L. Neubeck;A. Anand;K. Schulz;F. Apple;W. Parsonage;J. Greenslade;L. Cullen;J. Pickering;M. Than;A. Gray;C. Mueller;N. Mills;A. Mark Chris Richard W. Sally J. Anthony F. T. Emily Richards Pemberton Troughton Aldous Brown Dalton H;A. Richards;C. Pemberton;R. Troughton;S. Aldous;A. Brown;E. Dalton;C. Hammett;T. Hawkins;Shanen O’Kane;Kate Parke;Kimberley Ryan;Jessica Schluter;K. Wild;D. Wussler;Ò. Miró;F. Martín;D. Keller;M. Christ;A. Buser;M. Gimenez;S. Barker;Jennifer Blades;A. Chapman;T. Fujisawa;D. Kimenai;Jeremy Leung;Ziwen Li;M. McDermott;D. Newby;S. Schulberg;Anoop S. V. Shah;A. Sorbie;Grace Soutar;F. Strachan;C. Taggart;D. Vicencio;Yiqing Wang;R. Wereski;Kelly Williams;C. Weir;C. Berry;Alan Reid;D. Maguire;P. Collinson;Y. Sandoval;Stephen W. Smith
  • 通讯作者:
    Stephen W. Smith
Sex-Specific Thresholds of High-Sensitivity Troponin in Patients With Suspected Acute Coronary Syndrome
疑似急性冠状动脉综合征患者的高敏肌钙蛋白的性别特异性阈值
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    24
  • 作者:
    K. K. Lee;A. Ferry;A. Anand;F. Strachan;A. Chapman;D. Kimenai;S. Meex;Colin Berry;Iain Findlay;Alan Reid;A. Cruickshank;A. Gray;P O Collinson;F. Apple;D. A. McAllister;D. Maguire;K. A. Fox;David E. Newby;C. Tuck;C. Keerie;Christopher J. Weir;Anoop S. V. Shah;N. Mills;Nicholas L. Fiona E. Christopher Anoop S.V. Atul Amy V. Kua Mills Strachan Tuck Shah Anand Ferry Lee Chapman S;N. Mills;F. Strachan;C. Tuck;Anoop S. V. Shah;A. Anand;A. Ferry;K. K. Lee;A. Chapman;D. Sandeman;P. Adamson;C. Stables;Catalina A. Vallejo;Athanasios Tsanasis;L. Marshall;S. Stewart;T. Fujisawa;M. Hautvast;J. McPherson;L. McKinlay;David E. Newby;K. A. Fox;Colin Berry;S. Walker;Christopher J. Weir;I. Ford;A. Gray;P O Collinson;F. Apple;Alan Reid;A. Cruikshank;Iain Findlay;S. Amoils;D. A. McAllister;D. Maguire;Jennifer Stevens;J. Norrie;Christopher J. Weir;J. Andrews;A. Moss;Mohamed S. Anwar;J. Hung;Jonathan Malo;C. Fischbacher;B. Croal;S. Leslie;C. Keerie;R. Parker;Allan Walker;R. Harkess;Tony Wackett;Roma Armstrong;M. Flood;Laura Stirling;C. Macdonald;I. Sadat;F. Finlay;H. Charles;P. Linksted;Stephen Young;Bill Alexander;Chris Duncan
  • 通讯作者:
    Chris Duncan
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarction
高敏心肌肌钙蛋白和心肌梗塞的通用定义
  • DOI:
    10.1161/circulationaha.119.042960
  • 发表时间:
    2019-10-07
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Chapman;P. Adamson;Anoop S. V. Shah;A. An;F. Strachan;A. Ferry;Kuan Ken Lee;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;A. Gray;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;C. Vallejos;C. Keerie;C. Weir;D. Newby;N. Mills
  • 通讯作者:
    N. Mills

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
EMSW21-RTG-Program in low-dimensional topology and its applications
低维拓扑中的EMSW21-RTG-程序及其应用
  • 批准号:
    0636643
  • 财政年份:
    2007
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

非刚性折叠超材料的设计理论和力学性能研究
  • 批准号:
    52373293
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
复杂薄壁结构的弱刚性时变工艺系统动态响应预测与自适应控制
  • 批准号:
    52375465
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
刚性接触网加速区段的锚段关节异常磨耗机理及其延寿策略研究
  • 批准号:
    52362051
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
刚性兑付预期对金融资源配置的影响及其机制研究——基于债券市场定价效率视角
  • 批准号:
    72302237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
  • 批准号:
    10612154
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
  • 批准号:
    10688109
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
Modular representations of algebraic groups
代数群的模表示
  • 批准号:
    23540023
  • 财政年份:
    2011
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rigidity and Unitary Representations
刚性和酉表示
  • 批准号:
    9970774
  • 财政年份:
    1999
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Geometric Structures on Manifolds and Representations of Fundamental Group
流形上的几何结构和基本群的表示
  • 批准号:
    01540001
  • 财政年份:
    1989
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了