Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
基本信息
- 批准号:1805307
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The initial steps of biomass refining involve breakdown of the raw material to a biocrude oil containing a mixture of building block chemicals. The building block chemicals can be further refined to higher value products, often in the liquid phase, with the aid of a solvent and a solid catalyst. This project will investigate the transformation of one of those building block chemicals, 3-hydroxybutryolactone (3HBA), to several higher-value chemicals. Theoretical analysis and experimental methods will be combined to understand how the solvent influences the performance of the catalyst in promoting conversion of 3HBA to the desired products. Results of the study can be applied more generally to other bio-based chemicals to support a growing bio-refining industry relevant for the transition to renewable chemical production. The project will contribute to a highly trained workforce of experts in biomass processing, while also adding to U.S. technical prominence in biomanufacturing of chemicals. A major goal of heterogeneous catalysis research is to identify active sites and to understand how they interact with reactants, products, and the bulk environment to facilitate chemical transformations. While most catalyst studies focus on catalyst discovery, it is often the bulk reaction environment that benefits most from redesign. The focus on solvation effects in heterogeneous catalysis has recently expanded with the trend toward liquid-phase, catalytic processing of biomass. Motivated by this shift, the project focuses on developing the scientific foundations needed for the rational design of solvent systems for catalytically processing renewable oxygenates. Specifically, the proposed research aims at understanding how the nature of the solvent microenvironment impacts activity and selectivity of ruthenium (Ru) catalysts during reductive amination of 3-HBA to form 2-amino-3-hydroxytetrahydrofuran and 3-aminotetrahydrofuran. The proposed combination of computational and experimental research is structured around (1) state-of-the-art density functional theory calculations, (2) machine learning tools for accelerating complex reaction network investigation, (3) microkinetic reactor modeling under various experimental reaction conditions, (4) vapor phase catalyst evaluation and kinetic isotope effect studies, (5) catalyst evaluations in condensed phases of water, ethanol, 1,4-dioxane, and cyclohexane, and (6) systematic correlation of experimental data with computational models through Bayesian statistical analysis. An iterative research loop is proposed, with experimental observations leading to hypotheses that motivate new computations, while computational models will rationalize experimental findings and guide new investigations. The research program includes undergraduate outreach, and research results will be integrated into undergraduate and graduate electives and the core chemical engineering curriculum at both Syracuse University and the University of South Carolina.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物质精炼的初始步骤包括将原材料分解为含有化学成分混合物的生物原油。 借助溶剂和固体催化剂,结构单元化学品可以进一步精炼成更高价值的产品,通常是在液相中。 该项目将研究将其中一种基础化学品 3-羟基丁内酯 (3HBA) 转化为几种更高价值的化学品。 将理论分析和实验方法相结合,以了解溶剂如何影响催化剂促进3HBA转化为所需产物的性能。 该研究的结果可以更广泛地应用于其他生物基化学品,以支持与向可再生化学品生产过渡相关的不断增长的生物精炼行业。 该项目将有助于培养训练有素的生物质加工专家队伍,同时也增强美国在化学品生物制造方面的技术优势。 多相催化研究的一个主要目标是识别活性位点并了解它们如何与反应物、产物和整体环境相互作用以促进化学转化。 虽然大多数催化剂研究都集中在催化剂的发现上,但从重新设计中受益最多的往往是本体反应环境。近年来,随着生物质液相催化加工的趋势,对多相催化中溶剂化效应的关注不断扩大。受这一转变的推动,该项目重点开发合理设计催化加工可再生含氧化合物的溶剂系统所需的科学基础。具体来说,该研究旨在了解溶剂微环境的性质如何影响 3-HBA 还原胺化形成 2-氨基-3-羟基四氢呋喃和 3-氨基四氢呋喃过程中钌 (Ru) 催化剂的活性和选择性。所提出的计算和实验研究的结合围绕(1)最先进的密度泛函理论计算,(2)用于加速复杂反应网络研究的机器学习工具,(3)各种实验反应条件下的微动力学反应器建模,(4)气相催化剂评估和动力学同位素效应研究,(5)水、乙醇、1,4-二恶烷和环己烷凝聚相催化剂评估,以及(6)通过贝叶斯理论将实验数据与计算模型系统关联统计 分析。提出了一个迭代研究循环,通过实验观察得出激发新计算的假设,而计算模型将使实验结果合理化并指导新的研究。该研究计划包括本科生推广,研究成果将纳入雪城大学和南卡罗来纳大学的本科生和研究生选修课以及核心化学工程课程中。该奖项反映了 NSF 的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging De Donder relations for a thermodynamically rigorous analysis of reaction kinetics in liquid media
利用 De Donder 关系对液体介质中的反应动力学进行热力学严格分析
- DOI:10.1016/j.jcat.2021.09.026
- 发表时间:2021-12
- 期刊:
- 影响因子:7.3
- 作者:Schwartz, Thomas J.;Bond, Jesse Q.
- 通讯作者:Bond, Jesse Q.
Dilute Limit Alloy Pd–Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined Infrared Spectroscopic and Density Functional Theory Investigation
同时强静电吸附制备稀限合金Pd-Cu双金属催化剂:红外光谱与密度泛函理论相结合的研究
- DOI:10.1021/acs.jpcc.2c00234
- 发表时间:2022-07-05
- 期刊:
- 影响因子:0
- 作者:Le;ro T. De Castro;ro;Dia Sahsah;Andreas Heyden;J. Regalbuto;C. Williams
- 通讯作者:C. Williams
Analysis of thermodynamics, kinetics, and reaction pathways in the amination of secondary alcohols over Ru/SiO2
Ru/SiO2 上仲醇胺化的热力学、动力学和反应路径分析
- DOI:10.1016/j.jcat.2023.05.003
- 发表时间:2023-05-01
- 期刊:
- 影响因子:7.3
- 作者:Xin Gao;Dia Sahsah;Andreas Heyden;Jesse Q. Bond
- 通讯作者:Jesse Q. Bond
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Heyden其他文献
Probing surface-adsorbate interactions through active particle dynamics.
通过活性粒子动力学探测表面吸附物相互作用。
- DOI:
10.1016/j.jcis.2022.01.053 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:9.9
- 作者:
B. Greydanus;M. Saleheen;Haichao Wu;Andreas Heyden;J. Medlin;D. K. Schwartz - 通讯作者:
D. K. Schwartz
Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis
超小非晶氧化锆纳米粒子催化聚烯烃氢解
- DOI:
10.1038/s41929-023-00910-x - 发表时间:
2023-02-01 - 期刊:
- 影响因子:37.8
- 作者:
Shaojiang Chen;A. Tennakoon;Kyung;A. L. Paterson;Ryan D. Yappert;S. Alayoglu;Lingzhe Fang;Xun Wu;T. Y. Zhao;Michelle P. Lapak;Mukunth Saravanan;Ryan A. Hackler;Yi;Long Qi;M. Delferro;Tao Li;Byeongdu Lee;B. Peters;K. Poeppelmeier;S. C. Ammal;C. Bowers;Frédéric A. Perras;Andreas Heyden;A. Sadow;Wenyu Huang - 通讯作者:
Wenyu Huang
Optimum Reaction Conditions for 1,4-Anhydroerythritol and Xylitol Hydrodeoxygenation over a ReOx–Pd/CeO2 Catalyst via Design of Experiments
通过实验设计确定 ReOx-Pd/CeO2 催化剂上 1,4-脱水赤藓糖醇和木糖醇加氢脱氧的最佳反应条件
- DOI:
10.1021/acs.iecr.9b01463 - 发表时间:
2019-05-06 - 期刊:
- 影响因子:4.2
- 作者:
Blake MacQueen;Elizabeth Barrow;Gerardo Rivera Castro;Y. Pagán;Andreas Heyden;J. Lauterbach - 通讯作者:
J. Lauterbach
Comparative Study on the Machine Learning-Based Prediction of Adsorption Energies for Ring and Chain Species on Metal Catalyst Surfaces
基于机器学习的金属催化剂表面环链物质吸附能预测的比较研究
- DOI:
10.1021/acs.jpcc.1c05470 - 发表时间:
2021-08-19 - 期刊:
- 影响因子:0
- 作者:
Asif J. Chowdhury;Wenqiang Yang;Andreas Heyden;G. Terejanu - 通讯作者:
G. Terejanu
Unlocking the Potential of A-Site Ca-Doped LaCo0.2Fe0.8O3-δ: A Redox-Stable Cathode Material Enabling High Current Density in Direct CO2 Electrolysis.
释放 A 位钙掺杂 LaCo0.2Fe0.8O3-δ 的潜力:一种氧化还原稳定的阴极材料,可在直接 CO2 电解中实现高电流密度。
- DOI:
10.1021/acsami.3c08561 - 发表时间:
2023-09-06 - 期刊:
- 影响因子:9.5
- 作者:
Haixia Li;Wanhua Wang;Lucun Wang;Min Wang;Ka;Taehee Lee;Andreas Heyden;Dong Ding;Fanglin Chen - 通讯作者:
Fanglin Chen
Andreas Heyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Heyden', 18)}}的其他基金
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
- 批准号:
2218938 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: SusChEM: Rational design of non-precious metal catalysts for a future biorefining industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
- 批准号:
1565964 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Design and Discovery of Multimetallic Heterogeneous Catalysts for a Future Biorefining Industry
DMREF:合作研究:未来生物炼制行业多金属多相催化剂的设计和发现
- 批准号:
1534260 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Uncertainty Quantification in the Rational Design of Bifunctional Catalysts
职业:双功能催化剂合理设计中的不确定性量化
- 批准号:
1254352 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Rational design of bifunctional catalysts for the conversion of Ievulinic acid to gamma-valerolactone
合作研究:合理设计乙酰丙酸转化为γ-戊内酯的双功能催化剂
- 批准号:
1159863 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Rational Design of Selective Hydrodeoxygenation Catalysts for Organic Acids
有机酸选择性加氢脱氧催化剂的合理设计
- 批准号:
1153012 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Multiscale Modeling of Bifunctional Catalysts for the Water-Gas-Shift Reaction
水煤气变换反应双功能催化剂的多尺度建模
- 批准号:
0932991 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
- 批准号:62376261
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多模态数学问题理解和类人解答方法研究
- 批准号:62376012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向开放场景的多模态视频表征与理解研究
- 批准号:62376069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant