Multiscale Modeling of Bifunctional Catalysts for the Water-Gas-Shift Reaction

水煤气变换反应双功能催化剂的多尺度建模

基本信息

项目摘要

0932991 HeydenThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Intellectual Merit - For heterogeneously catalyzed reactions with more than one key surface intermediate, it is likely that multiphase catalysts have a significant advantage over conventional monophase catalysts since each phase can potentially be adjusted independently to activate a key reaction step. At the same time, understanding of bifunctional multiphase systems is relatively poor. It is the objective of this proposed research program to significantly enhance molecular understanding of heterogeneous catalysis at the three-phase boundary (TPB) of a gas-phase, a reducible oxide surface, and a noble metal cluster. To enable this theoretical investigation of chemical reactions at the TPB, the PI and his students propose to develop and validate a highly efficient and accurate computational strategy for these systems. It is their firm belief that only with a more accurate computational multiscale strategy that permits the reliable investigation of reactions on strongly correlated reducible oxide surfaces and metal clusters, will it be possible to truly understand the nature of the active sites, the origin of catalytic activity, and the reaction mechanism at the TPB under reaction conditions. As a model system for computational study, they intend to investigate the water-gas-shift (WGS) reaction on titania and ceria supported mono- and bimetallic clusters of Au, Pt, and Pd. Their computational strategy and study of the nature of the active site at the TPB is not limited to the WGS reaction but is likely more general as it has been shown that reducible oxide supported noble metals are highly active for various reactions such as the selective hydrogenation and oxidation of unsaturated hydrocarbons. Their computational strategy involves state-of-the-art periodic slab calculations to build and validate a periodic electrostatic embedded cluster model that is used for the study of various reaction pathways. Unlike periodic slab models, the periodic cluster model permits the use of modern doublehybrid density functionals with significantly improved accuracy for modeling chemical reactions on reducible oxide surfaces and metal clusters. Having determined reasonably accurate reaction energies and barriers, they intend to develop a microkinetic reactor model based on data obtained only from first principles and absolute rate theory. With the help of the microkinetic model, they will be able to study the effect of temperature and chemical potential of the gas phase on the reaction mechanism and key reaction intermediates. Furthermore, they will be able to determine the origin of the activity of the active sites by analyzing how the electronic structure is altered with changes in noble metal cluster and reducible oxide and by using Nørskov's method to distinguish electronic effects from geometric or structural effects. Finally, it is noted that the computational models and methods outlined in this proposal have not been used previously in the study of heterogeneous catalysis and collaboration with experimentalists such as Dr. Amiridis and Dr. Chen at USC is proposed to validate and test the computational predictions.Broader Impact, Science - The development of a more accurate computational strategy for studying reactions at the TPB of a gas-phase, a reducible oxide surface, and a noble metal cluster will significantly increase the reliability of theoretical investigations of these surprisingly catalytically active systems that are computationally very difficult to describe. Furthermore, understanding of the origin of the unique catalytic activity of these systems will likely aid the development of improved catalysts for various reactions that can be selectively activated by oxide supported noble metals.Broader Impact, Education - The graduate and undergraduate students directly involved in the proposed research will be exposed to a comprehensive set of theoretical tools that will allow them to study most issues in catalysis and material science. In addition, the results of the proposed research will be integrated in a joint graduate and undergraduate course "Multiscale Modeling: From Electrons to Chemical Reactors" that is currently being developed by the PI. Community Outreach - The graduate student involved in this research will spend one Fall semester in the Partners in Inquiry program at USC. She will assist a science teacher from a local middle school (82% African American or Hispanic origin) to integrate engineering and science content (including her research) and problem solving methods into the science curriculum. Finally, the PI is involved in the Enhanced Learning Experience (ELE) program at USC, in which high school students interested in chemical engineering are given a one day hands-on learning experience.
0932991 Heyden该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资助。 智力成果 - 对于具有多个关键表面中间体的非均相催化反应,多相催化剂可能比传统单相催化剂具有显着优势催化剂,因为每个相都可以独立调节以激活关键反应步骤。同时,对双功能多相系统的了解相对较少。该研究计划的目标是显着增强对气相、可还原氧化物表面和贵金属簇的三相边界(TPB)多相催化的分子理解,从而实现化学反应的理论研究。在 TPB,PI 和他的学生提议为这些系统开发和验证高效且准确的计算策略,他们坚信,只有更准确的计算多尺度策略才能对相关可还原氧化物的反应进行可靠的研究。表面和金属簇,是否有可能真正了解活性位点的性质、催化活性的起源以及反应条件下TPB的反应机制,作为计算研究的模型系统,他们打算研究水-气-反应。他们的计算策略和对 TPB 活性位点性质的研究不仅限于 WGS 反应,而且可能更通用。作为研究表明,可还原氧化物负载的贵金属对各种反应具有高度活性,例如不饱和烃的选择性加氢和氧化,其计算策略涉及最先进的周期性平板计算,以构建和验证周期性静电嵌入簇。用于研究各种反应路径的模型,与周期性板模型不同,周期性簇模型允许使用现代双混合密度泛函,并且显着提高了对可还原氧化物表面和金属上的化学反应进行建模的准确性。在确定了相当准确的反应能量和势垒后,他们打算根据仅从第一原理和绝对速率理论获得的数据开发微动力学反应器模型,在微动力学模型的帮助下,他们将能够研究温度的影响。此外,他们将能够通过分析电子结构如何随贵金属簇和可还原氧化物的变化来确定活性位点的活性来源。通过使用 Nørskov 方法最后,值得注意的是,该提案中概述的计算模型和方法之前尚未用于多相催化的研究以及与 Amiridis 博士和 Chen 博士等实验者的合作。 USC 旨在验证和测试计算预测。更广泛的影响,科学 - 开发更准确的计算策略来研究气相、可还原氧化物表面和贵金属簇的 TPB 反应将显着提高理论的可靠性此外,对这些令人惊讶的催化活性系统的研究在计算上很难描述,了解这些系统独特催化活性的起源可能有助于开发可被氧化物负载的贵金属选择性激活的各种反应的改进催化剂。 .更广泛的影响,教育-直接参与拟议研究的研究生和本科生将接触到一套全面的理论工具,使他们能够研究催化和材料科学中的大多数问题。此外,拟议研究的结果。将纳入研究生和本科生联合课程“多尺度建模:从电子到化学反应器”,该课程目前由 PI 社区外展开发 - 参与这项研究的研究生将在南加州大学的合作伙伴探究项目中度过一个秋季学期。她将协助当地中学的科学老师(82%为非裔美国人或西班牙裔)将工程和科学内容(包括她的研究)和解决问题的方法融入到科学课程中。学习经历南加州大学的 (ELE) 项目,为对化学工程感兴趣的高中生提供一日实践学习体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Heyden其他文献

Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(111) model surfaces based on parameters obtained from first principles
基于第一性原理获得的参数,对 Pd(111) 模型表面上的丙酸脱羧和脱羰进行微动力学建模
  • DOI:
    10.1016/j.jcat.2013.04.026
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Jianmin Lu;Sina Behtash;M. Faheem;Andreas Heyden
  • 通讯作者:
    Andreas Heyden
Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces
Pd(111)模型表面丙酸甲酯加氢脱氧的理论研究
  • DOI:
    10.1039/c4cy00511b
  • 发表时间:
    2014-10-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Sina Behtash;Jianmin Lu;Andreas Heyden
  • 通讯作者:
    Andreas Heyden
Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis
超小非晶氧化锆纳米粒子催化聚烯烃氢解
  • DOI:
    10.1038/s41929-023-00910-x
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Shaojiang Chen;A. Tennakoon;Kyung;A. L. Paterson;Ryan D. Yappert;S. Alayoglu;Lingzhe Fang;Xun Wu;T. Y. Zhao;Michelle P. Lapak;Mukunth Saravanan;Ryan A. Hackler;Yi;Long Qi;M. Delferro;Tao Li;Byeongdu Lee;B. Peters;K. Poeppelmeier;S. C. Ammal;C. Bowers;Frédéric A. Perras;Andreas Heyden;A. Sadow;Wenyu Huang
  • 通讯作者:
    Wenyu Huang
Probing surface-adsorbate interactions through active particle dynamics.
通过活性粒子动力学探测表面吸附物相互作用。
  • DOI:
    10.1016/j.jcis.2022.01.053
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    B. Greydanus;M. Saleheen;Haichao Wu;Andreas Heyden;J. Medlin;D. K. Schwartz
  • 通讯作者:
    D. K. Schwartz
Optimum Reaction Conditions for 1,4-Anhydroerythritol and Xylitol Hydrodeoxygenation over a ReOx–Pd/CeO2 Catalyst via Design of Experiments
通过实验设计确定 ReOx-Pd/CeO2 催化剂上 1,4-脱水赤藓糖醇和木糖醇加氢脱氧的最佳反应条件
  • DOI:
    10.1021/acs.iecr.9b01463
  • 发表时间:
    2019-05-06
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Blake MacQueen;Elizabeth Barrow;Gerardo Rivera Castro;Y. Pagán;Andreas Heyden;J. Lauterbach
  • 通讯作者:
    J. Lauterbach

Andreas Heyden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Heyden', 18)}}的其他基金

Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
  • 批准号:
    2218938
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
  • 批准号:
    1805307
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SusChEM: Rational design of non-precious metal catalysts for a future biorefining industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
  • 批准号:
    1565964
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Design and Discovery of Multimetallic Heterogeneous Catalysts for a Future Biorefining Industry
DMREF:合作研究:未来生物炼制行业多金属多相催化剂的设计和发现
  • 批准号:
    1534260
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Uncertainty Quantification in the Rational Design of Bifunctional Catalysts
职业:双功能催化剂合理设计中的不确定性量化
  • 批准号:
    1254352
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Rational design of bifunctional catalysts for the conversion of Ievulinic acid to gamma-valerolactone
合作研究:合理设计乙酰丙酸转化为γ-戊内酯的双功能催化剂
  • 批准号:
    1159863
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Rational Design of Selective Hydrodeoxygenation Catalysts for Organic Acids
有机酸选择性加氢脱氧催化剂的合理设计
  • 批准号:
    1153012
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of a bifunctional mucinase in modulating personalized gut microbiota-Vibrio cholerae interactions during infection
双功能粘蛋白酶在感染期间调节个性化肠道微生物群-霍乱弧菌相互作用中的作用
  • 批准号:
    10749595
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Trimerization of the N-terminal Domain of ACE2 for Bifunctional Trapping of Future SARS-CoV-2 Variants
ACE2 N 末端结构域的三聚化,用于未来 SARS-CoV-2 变体的双功能捕获
  • 批准号:
    10288255
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Trimerization of the N-terminal Domain of ACE2 for Bifunctional Trapping of Future SARS-CoV-2 Variants
ACE2 N 末端结构域的三聚化,用于未来 SARS-CoV-2 变体的双功能捕获
  • 批准号:
    10448485
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
  • 批准号:
    10374792
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
  • 批准号:
    10570900
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了