Collaborative Research: SusChEM: Rational design of non-precious metal catalysts for a future biorefining industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
基本信息
- 批准号:1565964
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of biomass such as waste wood products and corn stalks is attractive as a potential source of fuel and chemical feedstocks. Heterogeneous catalysts are often used in the transformation of biomass to useful chemicals, but the most effective known catalysts are composed of rare and expensive platinum group metals. Dr. Heyden of the University of South Carolina and Dr. Chen of Columbia University are collaborating to develop a cheap and abundant material, molybdenum carbide (Mo2C) as a replacement for platinum. They are studying how the catalytic properties of Mo2C can be enhanced by the addition of iron, copper, cobalt and nickel for sustainable chemistry of biomass transformation. The team is elucidating the underlying science needed for the development of highly selective, non-precious metal catalysts for upgrading a specific chemical derived from biomass called glycerol (C3H8O3). Glycerol has been identified as one of the top twelve building block chemicals that can be derived from sugar and converted to high-value bio-based chemicals and materials. Also, glycerol is a major by-product of the biodiesel production by transesterification of vegetable oils and the diversification of products derived from glycerol has been identified as a key issue for biodiesel production. A major focus of their research lies in evaluating the degree of the surface oxidation due to the presence of oxygen in the glycerol and in water, and in developing the understanding of how oxygen modification of the catalyst affects the reaction. Research activities also form broader impacts through the establishment of summer research internships for undergraduate students in the laboratories of Drs. Chen and Heyden, who mentor students to encourage them to pursue graduate studies and careers in renewable energy and chemical production. Drs. Chen and Heyden are also actively engaged in integrating research results into the undergraduate and graduate chemical engineering curriculum at Columbia University and the University of South Carolina.With funding from the Chemical Catalysis Program of the Chemistry Division, Dr. Chen of Columbia University and Dr. Heyden of the University of South Carolina are developing highly selective, non-precious metal catalysts for the hydrodeoxygenation (HDO) of biomass-derived polyols. Current HDO catalysts are primarily based on platinum-group metal catalysts, but their high costs and limited abundance are potential concerns for the production of cost-effective, biomass-based fuels and chemicals. In particular, molybdenum carbide (Mo2C) is highly selective for C-O/C=O bond cleavage (C = carbon and O = oxygen) and can furthermore be modified by non-precious 3d-metals (iron, cobalt, nickel, and copper) to enhance the catalytic activity, selectivity, and stability for targeted HDO reactions. To identify the active sites in Mo2C and 3d-metal modified Mo2C and the reaction mechanism of the HDO of biomass-derived polyols on these active sites, Drs. Chen and Heyden apply a combined computational and experimental research approach that is based on density function theory (DFT) calculations on single crystal model surfaces. They also use ultrahigh vacuum (UHV) experiments on single crystal model surfaces to validate DFT-predicted trends, reactor evaluations over the corresponding powder catalysts, microkinetic reactor modeling under various experimental reaction conditions, and systematic correlation of experimental data with computational models. Knowledge from the proposed research provides guidelines for designing non-precious metal catalysts for the selective transformation of glycerol in particular and of biomass-derived molecules in general. Broader impacts in education are included by integrating research findings into undergraduate and graduate electives in the core chemical engineering curriculum at Columbia University and the University of South Carolina.
废木制品和玉米秸秆等生物质的利用作为燃料和化学原料的潜在来源很有吸引力。 非均相催化剂通常用于将生物质转化为有用的化学品,但已知最有效的催化剂由稀有且昂贵的铂族金属组成。 南卡罗来纳大学的海登博士和哥伦比亚大学的陈博士正在合作开发一种廉价且丰富的材料碳化钼(Mo2C)作为铂的替代品。 他们正在研究如何通过添加铁、铜、钴和镍来增强 Mo2C 的催化性能,以实现生物质转化的可持续化学。该团队正在阐明开发高选择性非贵金属催化剂所需的基础科学,以升级一种源自生物质的特定化学品,称为甘油 (C3H8O3)。 甘油已被确定为可从糖中提取并转化为高价值生物基化学品和材料的十二大化学原料之一。 此外,甘油是植物油酯交换生产生物柴油的主要副产品,甘油衍生产品的多样化已被确定为生物柴油生产的关键问题。 他们研究的主要重点在于评估由于甘油和水中存在氧而导致的表面氧化程度,以及加深对催化剂的氧改性如何影响反应的理解。 通过在博士实验室为本科生设立暑期研究实习,研究活动也产生了更广泛的影响。陈和海登指导学生,鼓励他们在可再生能源和化学品生产领域攻读研究生和职业。 博士。陈博士和海登博士还积极致力于将研究成果融入哥伦比亚大学和南卡罗来纳大学的本科生和研究生化学工程课程。在化学系化学催化项目的资助下,哥伦比亚大学的陈博士和海登博士南卡罗来纳大学的 Heyden 正在开发高选择性非贵金属催化剂,用于生物质衍生多元醇的加氢脱氧 (HDO)。目前的HDO催化剂主要基于铂族金属催化剂,但其高成本和有限的丰度是生产具有成本效益的生物质燃料和化学品的潜在问题。特别是,碳化钼 (Mo2C) 对 C-O/C=O 键断裂具有高度选择性(C = 碳,O = 氧),并且还可以通过非贵重 3d 金属(铁、钴、镍和铜)进行改性提高目标 HDO 反应的催化活性、选择性和稳定性。为了确定 Mo2C 和 3d 金属改性 Mo2C 中的活性位点以及生物质衍生多元醇在这些活性位点上的 HDO 反应机制,Drs. Chen 和 Heyden 应用基于单晶模型表面密度函数理论 (DFT) 计算的计算和实验相结合的研究方法。 他们还使用单晶模型表面的超高真空 (UHV) 实验来验证 DFT 预测的趋势、对相应粉末催化剂的反应器评估、各种实验反应条件下的微动力学反应器建模,以及实验数据与计算模型的系统关联。拟议研究的知识为设计非贵金属催化剂提供了指导,用于选择性转化特别是甘油和一般生物质衍生分子。 通过将研究成果融入哥伦比亚大学和南卡罗来纳大学本科生和研究生核心化学工程课程的选修课中,对教育产生了更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Heyden其他文献
Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(111) model surfaces based on parameters obtained from first principles
基于第一性原理获得的参数,对 Pd(111) 模型表面上的丙酸脱羧和脱羰进行微动力学建模
- DOI:
10.1016/j.jcat.2013.04.026 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:7.3
- 作者:
Jianmin Lu;Sina Behtash;M. Faheem;Andreas Heyden - 通讯作者:
Andreas Heyden
Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces
Pd(111)模型表面丙酸甲酯加氢脱氧的理论研究
- DOI:
10.1039/c4cy00511b - 发表时间:
2014-10-06 - 期刊:
- 影响因子:5
- 作者:
Sina Behtash;Jianmin Lu;Andreas Heyden - 通讯作者:
Andreas Heyden
Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis
超小非晶氧化锆纳米粒子催化聚烯烃氢解
- DOI:
10.1038/s41929-023-00910-x - 发表时间:
2023-02-01 - 期刊:
- 影响因子:37.8
- 作者:
Shaojiang Chen;A. Tennakoon;Kyung;A. L. Paterson;Ryan D. Yappert;S. Alayoglu;Lingzhe Fang;Xun Wu;T. Y. Zhao;Michelle P. Lapak;Mukunth Saravanan;Ryan A. Hackler;Yi;Long Qi;M. Delferro;Tao Li;Byeongdu Lee;B. Peters;K. Poeppelmeier;S. C. Ammal;C. Bowers;Frédéric A. Perras;Andreas Heyden;A. Sadow;Wenyu Huang - 通讯作者:
Wenyu Huang
Probing surface-adsorbate interactions through active particle dynamics.
通过活性粒子动力学探测表面吸附物相互作用。
- DOI:
10.1016/j.jcis.2022.01.053 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:9.9
- 作者:
B. Greydanus;M. Saleheen;Haichao Wu;Andreas Heyden;J. Medlin;D. K. Schwartz - 通讯作者:
D. K. Schwartz
Optimum Reaction Conditions for 1,4-Anhydroerythritol and Xylitol Hydrodeoxygenation over a ReOx–Pd/CeO2 Catalyst via Design of Experiments
通过实验设计确定 ReOx-Pd/CeO2 催化剂上 1,4-脱水赤藓糖醇和木糖醇加氢脱氧的最佳反应条件
- DOI:
10.1021/acs.iecr.9b01463 - 发表时间:
2019-05-06 - 期刊:
- 影响因子:4.2
- 作者:
Blake MacQueen;Elizabeth Barrow;Gerardo Rivera Castro;Y. Pagán;Andreas Heyden;J. Lauterbach - 通讯作者:
J. Lauterbach
Andreas Heyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Heyden', 18)}}的其他基金
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
- 批准号:
2218938 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1805307 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Design and Discovery of Multimetallic Heterogeneous Catalysts for a Future Biorefining Industry
DMREF:合作研究:未来生物炼制行业多金属多相催化剂的设计和发现
- 批准号:
1534260 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Uncertainty Quantification in the Rational Design of Bifunctional Catalysts
职业:双功能催化剂合理设计中的不确定性量化
- 批准号:
1254352 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Rational design of bifunctional catalysts for the conversion of Ievulinic acid to gamma-valerolactone
合作研究:合理设计乙酰丙酸转化为γ-戊内酯的双功能催化剂
- 批准号:
1159863 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Rational Design of Selective Hydrodeoxygenation Catalysts for Organic Acids
有机酸选择性加氢脱氧催化剂的合理设计
- 批准号:
1153012 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Modeling of Bifunctional Catalysts for the Water-Gas-Shift Reaction
水煤气变换反应双功能催化剂的多尺度建模
- 批准号:
0932991 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
多场耦合条件下固态金属锂电池枝晶生长和界面电化学反应机制原位电镜研究
- 批准号:
- 批准年份:2020
- 资助金额:260 万元
- 项目类别:联合基金项目
高低温液相电化学原位透射电镜样品杆研究平台的研制
- 批准号:
- 批准年份:2019
- 资助金额:693.52 万元
- 项目类别:国家重大科研仪器研制项目
液体环境下MXene电极材料电化学储能机理的原位透射电镜研究
- 批准号:11804106
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
低维金属纳米材料化学置换反应机理的原位液体环境球差校正透射电子显微学动态研究
- 批准号:11874001
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
原位透射电镜研究高硫负载量锂硫电池硫正极材料的单体锂化及其电化学性能
- 批准号:11804048
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324346 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324345 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
- 批准号:
2023847 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
- 批准号:
2005905 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
- 批准号:
1938893 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant