CAREER: From Data to Knowledge: Extracting and Utilizing Concept Graphs in Online Environments
职业:从数据到知识:在线环境中提取和利用概念图
基本信息
- 批准号:1802358
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-13 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knowledge bases today are central to the successful utilization of information available in the large and growing amounts of digital data on the Web. Such technologies have started to unleash a transformation of Web search from a keyword match to discovery, learning, and creativity, which are crucial to promoting the goal of knowledge discovery. Unfortunately, the search for information remains inherently difficult for significant portions of the Web such as the Scholarly Web, which contains many millions of scientific documents. For example, PubMed has over 20 million documents, whereas Google Scholar is estimated to have more than 100 million. Open-access digital libraries such as CiteSeerX, which acquire freely-available research articles from the Web, witness an increase in their document collections as well. Despite attractive advancements by scholarly search portals, semantic search technologies that "understand" complex concepts and their relations and can systematically satisfy users' intricate information needs have yet to be investigated on the Scholarly Web. The goal of this project is to design solutions to make information more accessible and comprehensible to Scholarly Web users in particular, and Web users in general, and to help them discover knowledge more effectively and efficiently. The approach taken will be to develop an integrated framework, focusing on the extraction and utilization of scholarly knowledge graphs in online scholarly environments. Educationally, this work will involve: training of graduate, undergraduate, and high-school students, particularly encouraging the participation of women and underrepresented groups in the research efforts; curriculum development and integration of research into courses taught by the PI; exposure of students to industry and international experiences; and education for the general public. The project will target the following research objectives: (1) explore the construction of scholarly knowledge graphs that combine evidence from multiple resources in an open information extraction framework; (2) design and develop novel algorithms for the detection and analysis of interesting and previously unknown connections between concepts, in order to enforce knowledge discovery on the Scholarly Web; and (3) investigate the utility of scholarly knowledge graphs in a question answering system. The results of this research will be integrated into the CiteSeerX digital library (http://citeseerx.ist.psu.edu). The software, tools, and benchmark datasets, which will be developed during the course of this project will be made publicly available. All findings will be shared with the research community through publications in academic journals and presented in Information Retrieval, Text Mining and Natural Language Processing conferences. For further information, see the project web page: http://www.cse.unt.edu/~ccaragea/skg.html.
如今,知识库对于成功利用网络上大量且不断增长的数字数据中的可用信息至关重要。这些技术已经开始推动网络搜索从关键词匹配向发现、学习和创造力的转变,这对于促进知识发现的目标至关重要。不幸的是,对于网络的重要部分(例如包含数百万科学文档的学术网络)来说,搜索信息本质上仍然很困难。例如,PubMed 拥有超过 2000 万份文档,而 Google Scholar 估计拥有超过 1 亿份文档。诸如 CiteSeerX 之类的开放获取数字图书馆可以从网络上免费获取研究文章,其文献收藏也有所增加。尽管学术搜索门户取得了引人注目的进步,但“理解”复杂概念及其关系并能够系统地满足用户复杂信息需求的语义搜索技术尚未在学术网络上得到研究。该项目的目标是设计解决方案,使信息对于学术 Web 用户(尤其是一般 Web 用户)更容易访问和理解,并帮助他们更有效地发现知识。采取的方法将是开发一个综合框架,重点关注在线学术环境中学术知识图的提取和利用。在教育方面,这项工作将涉及: 培训研究生、本科生和高中生,特别是鼓励妇女和代表性不足的群体参与研究工作;课程开发以及将研究整合到 PI 教授的课程中;让学生接触行业和国际经验;和对公众的教育。该项目将实现以下研究目标:(1)探索学术知识图谱的构建,在开放的信息提取框架中结合多种资源的证据; (2) 设计和开发新颖的算法,用于检测和分析概念之间有趣的和以前未知的联系,以加强学术网络上的知识发现; (3) 研究学术知识图在问答系统中的效用。这项研究的结果将被整合到 CiteSeerX 数字图书馆 (http://citeseerx.ist.psu.edu) 中。在该项目过程中开发的软件、工具和基准数据集将公开提供。所有研究结果将通过学术期刊上的出版物与研究界分享,并在信息检索、文本挖掘和自然语言处理会议上展示。有关更多信息,请参阅项目网页:http://www.cse.unt.edu/~ccaragea/skg.html。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cornelia Caragea其他文献
Multimedia Data Querying
多媒体数据查询
- DOI:
10.1007/978-0-387-39940-9_1039 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cornelia Caragea;V. Honavar;P. Boncz;Per;Suzanne W. Dietrich;Gonzalo Navarro;B. Thuraisingham;Yan Luo;Ouri E. Wolfson;S. Beitzel;Eric C. Jensen;O. Frieder;C. S. Jensen;N. Tradisauskas;E. Munson;A. Wun;K. Goda;Stephen E. Fienberg;Jiashun Jin;Guimei Liu;Nick Craswell;T. Pedersen;Cesare Pautasso;M. Moro;S. Manegold;B. Carminati;Marina Blanton;S. Bouchenak;Noël de Palma;Wei Tang;C. Quix;M. Jeusfeld;R. K. Pon;David J. Buttler;Weiyi Meng;P. Zezula;Michal Batko;Vlastislav Dohnal;J. Domingo;Denilson Barbosa;I. Manolescu;Jeffrey Xu Yu;E. Cecchet;Vivien Quéma;Xifeng Yan;G. Santucci;D. Zeinalipour;P. Chrysanthis;Amol Deshpande;Carlos Guestrin;S. Madden;C. Leung;Ralf Hartmut Güting;Amarnath Gupta;Heng Tao Shen;G. Weikum;Ramesh Jain;Jeffrey Xu Yu;P. Ciaccia;K. Candan;M. Sapino;C. Meghini;Fabrizio Sebastiani;U. Straccia;F. Nack;V. S. Subrahmanian;Maria Vanina Martinez;D. Reforgiato;T. Westerveld;M. Sebillo;G. Vitiello;Maria De Marsico;K. Voruganti;C. Parent;S. Spaccapietra;C. Vangenot;Esteban Zimányi;Prasan Roy;S. Sudarshan;Enrico Puppo;Peer Kröger;M. Renz;H. Schuldt;Solmaz Kolahi;A. Unwin;W. Cellary - 通讯作者:
W. Cellary
Identifying Medical Self-Disclosure in Online Communities
识别在线社区中的医疗自我披露
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mohammad Valizadeh;Pardis Ranjbar;Cornelia Caragea;Natalie Parde - 通讯作者:
Natalie Parde
Comparison of Word Embeddings and Sentence Encodings as Generalized Representations for Crisis Tweet Classification Tasks
词嵌入和句子编码作为危机推文分类任务的广义表示的比较
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Hongmin Li;Xukun Li;Doina Caragea;Cornelia Caragea - 通讯作者:
Cornelia Caragea
Defining resilience analytics for interdependent cyber-physical-social networks
定义相互依赖的网络-物理-社交网络的弹性分析
- DOI:
10.1080/23789689.2017.1294859 - 发表时间:
2017-03-02 - 期刊:
- 影响因子:5.9
- 作者:
K. Barker;J. Lambert;C. Zobel;Andrea H. Tapia;J. Ramírez;Laura A. Albert;Charles D. Nicholson;Cornelia Caragea - 通讯作者:
Cornelia Caragea
Deep Gated Multi-modal Fusion for Image Privacy Prediction
用于图像隐私预测的深门控多模态融合
- DOI:
10.1145/3608446 - 发表时间:
2023-07-22 - 期刊:
- 影响因子:3.5
- 作者:
Chenye Zhao;Cornelia Caragea - 通讯作者:
Cornelia Caragea
Cornelia Caragea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cornelia Caragea', 18)}}的其他基金
CRI: CI-SUSTAIN: Collaborative Research: CiteSeerX: Toward Sustainable Support of Scholarly Big Data
CRI:CI-SUSTAIN:协作研究:CiteSeerX:迈向学术大数据的可持续支持
- 批准号:
1853919 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
- 批准号:
1741353 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CRI: CI-SUSTAIN: Collaborative Research: CiteSeerX: Toward Sustainable Support of Scholarly Big Data
CRI:CI-SUSTAIN:协作研究:CiteSeerX:迈向学术大数据的可持续支持
- 批准号:
1823292 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Towards Privacy Preserving Online Image Sharing
TWC:小型:协作:实现隐私保护在线图像共享
- 批准号:
1903714 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1903963 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Keyphrase Extraction in Document Networks
III:小:协作研究:文档网络中的关键词提取
- 批准号:
1813571 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1814271 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Towards Privacy Preserving Online Image Sharing
TWC:小型:协作:实现隐私保护在线图像共享
- 批准号:
1814255 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
- 批准号:
1802284 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CAREER: From Data to Knowledge: Extracting and Utilizing Concept Graphs in Online Environments
职业:从数据到知识:在线环境中提取和利用概念图
- 批准号:
1652674 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
相似国自然基金
数据知识联合驱动的PHM协同型调度集成与优化
- 批准号:62373288
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
知识与数据融合驱动的多工况过程动静态协同监测与故障溯源研究
- 批准号:62303276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据知识联合驱动的闭环控制系统早期故障诊断研究
- 批准号:62373227
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
- 批准号:52375485
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
知识引导的面向多模态地质数据的复杂实体及关系精准抽取
- 批准号:42301492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别: