CAREER: A Versatile Quantum Simulator for Fermionic Ordering

职业:费米子有序的多功能量子模拟器

基本信息

  • 批准号:
    1941985
  • 负责人:
  • 金额:
    $ 74.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This CAREER award supports the development of a novel and versatile “quantum simulator” aimed at better understanding the properties of solid materials. In addition to attributes like density and elasticity, materials have properties such as electrical conductivity and magnetism that result from the fundamentally quantum mechanical behavior of the dense gas of electrons holding the atoms together. Some of the wide variety of complex and technologically important properties of materials, such as superconductivity and magnetism, can only be understood using quantum theory. Unfortunately, the centrality of quantum mechanics to these properties means that simulating them with classical computation devices is either ineffective or inefficient. This award supports an alternative approach, wherein the awardee and his students are developing a simulator capable of modeling the underlying physics of materials using the quantum properties of atoms. In order to bring out the quantum effects in lithium atoms, they need to simultaneously cool the atoms to within one millionth of a degree above absolute zero and cause them to act like a solid material. Students will use one set of lasers to slow the atoms down to achieve the cooling, and another set of lasers to pin them in place. Critical to this award, scientists, including the awardee, have developed a technique to shake the pinned atoms, which coerces them into emulating a much larger range of materials than previously possible. This award will further scientific insight into materials of technological relevance, as well as support a new generation of students in understanding quantum interactions. In addition to supporting the training of graduate students, the award supports high school students and teachers from the Atlanta area to work in the lab over the summer on mechanical and electronic (“mechatronic”) automation tools to increase lab productivity. The skills and knowledge of state-of-the-art laboratory set up acquired will be used to develop similar tools for the high school physics lab.This award supports a novel approach to quantum simulation of materials using laser cooled, ultra-cold lithium. Many of the details of debated importance in materials relate to the Fermi surface, where the conduction electrons live. The project will employ shaken optical lattices, which allow a great degree of control over the shape of the Fermi surface. Thereby, the Fermi surface will be tuned to favor or disfavor certain types of order. Important questions about how these different forms of order can compete or co-exist can be answered, and create complex phase diagrams generated from a well understood microscope model that can be directly compared with theory. The project team will use resonant optical lattice shaking in a gas of ultracold lithium atoms to tune the Fermi surface shape. The project goals include facilitating interactions with significant momentum dependence, demonstrating two merging Fermi surfaces at a neck closing (Lifshitz) transition, and creating models of nesting-driven density wave formation in a “clean” scenario where no lattice phonon modes exist to provide an alternate mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持了一种新颖而多功能的“量子模拟器”的开发,旨在更好地了解固体材料的特性。除了诸如密度和弹性之类的属性外,材料还具有诸如电导率和磁性之类的特性,这些特性是由将原子凝聚在一起的电子的致密气体的根本量子机械行为所产生的。只有使用量子理论才能理解材料的各种多种复杂和技术上重要的特性,例如超导性和磁性。不幸的是,量子机制对这些性质的中心性意味着使用经典计算设备模拟它们是无效或无效的。该奖项支持一种替代方法,其中获奖者和他的学生正在开发一个模拟器,能够使用原子的量子特性对材料的基本物理进行建模。为了提出锂原子中的量子效应,它们只需将原子冷却到超过绝对零的一百万之内,并导致它们像固体材料一样。学生将使用一组激光降低原子以实现冷却,而另一组激光器将它们固定在适当的位置。对该奖项至关重要的是,包括获奖者在内的科学家已经开发了一种动摇钉子原子的技术,该技术促使他们模仿比以前可能更大的材料范围。该奖项将进一步科学了解技术认可材料,并支持新一代学生理解量子相互作用。除了支持研究生的培训外,该奖项还支持亚特兰大地区的高中生和老师在夏季在实验室工作,以机械和电子(“机电”)自动化工具来提高实验室的生产率。获得的最先进实验室设置的技能和知识将用于为高中物理实验室开发类似的工具。该奖项支持使用激光冷却的超冷锂来对材料进行量子模拟的新方法。材料中争论重要性的许多细节与传导电子所在的费米表面有关。该项目将雇用摇动光学晶格,从而可以对费米表面的形状进行极大的控制。因此,Fermi表面将被调整为有利于或不利于有关这些不同形式的秩序如何竞争或共存的重要问题,并创建从可以直接将其与理论进行比较的知名显微镜模型产生的复杂相图。该项目团队将使用相关的光学格子在超低锂原子的气体中摇动来调整费米表面形状。项目目标包括支持具有显着动量依赖性的相互作用,证明在脖子闭合(Lifshitz)过渡时进行了两个合并的费米表面,并在“干净”的场景中创建了筑巢驱动的密度波形成模型,没有晶格声音模式存在,其中不存在替代机制,以替代NSF的构建范围,这是NSF的构建范围,这是NSF的构建范围的,该奖项的构建范围是众所周知的,其构建的智力范围是众所周知的,是众所周知的。审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Instability and momentum bifurcation of a molecular Bose-Einstein condensate in a shaken lattice with exotic dispersion
具有奇异色散的振动晶格中分子玻色-爱因斯坦凝聚态的不稳定性和动量分岔
  • DOI:
    10.1103/physreva.108.l051302
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Kaiyue;Xiong, Feng;Long, Yun;Ma, Yun;Parker, Colin V.
  • 通讯作者:
    Parker, Colin V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Parker其他文献

Spatial modulations of electronic states in the pseudogap phase of cuprates : ordering or interference?
铜酸盐赝能隙相中电子态的空间调制:有序还是干扰?
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hashisaka;et. al.;Colin Parker
  • 通讯作者:
    Colin Parker

Colin Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Parker', 18)}}的其他基金

Submerged-Shell Atoms Trapped in Noble Gas Solids for Quantum Information and Measurement
捕获在稀有气体固体中的水下壳原子用于量子信息和测量
  • 批准号:
    2310394
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Standard Grant

相似海外基金

A versatile multi-project cleanroom fabrication process for superconducting quantum circuits
用于超导量子电路的多功能多项目洁净室制造工艺
  • 批准号:
    576748-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Alliance Grants
STTR Phase II: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
STTR 第二阶段:用于量子信息处理的多功能低噪声行波参量放大器
  • 批准号:
    2025848
  • 财政年份:
    2021
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
SBIR 第一阶段:用于量子信息处理的多功能低噪声行波参量放大器
  • 批准号:
    1843017
  • 财政年份:
    2019
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Standard Grant
Efficient and Versatile Fiber-based Quantum Photonic Sources
高效且多功能的基于光纤的量子光子源
  • 批准号:
    RGPIN-2014-06425
  • 财政年份:
    2018
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and Versatile Fiber-based Quantum Photonic Sources**
高效且多功能的基于光纤的量子光子源**
  • 批准号:
    462021-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了