RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
基本信息
- 批准号:1819229
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving systems of equations and optimizing a function over such systems are ubiquitous in computational mathematics. The functions or equations being nonlinear and/or nonconvex often make these tasks challenging. Further, uncertainty in problem parameters adds to the problem complexity. A crucial part of modern society where such problems are prevalent is power systems. Two central computations in power systems operations are power flow (PF) studies and optimal power flow (OPF). PF studies ensure the power grid state (i.e., voltages and flows across the network) will remain within acceptable limits in spite of contingencies (e.g., loss of a generator or a transmission line) and other uncertainties (e.g., shifting demand or renewable sources of power such as wind and solar). OPF seeks further to choose values for controllable assets in the system (e.g., generators whose rate of power production could be controlled) so as to meet demand at minimum cost. These problems have inherent nonlinearities and nonconvexities, making them hard to solve in their natural form. This project uses ideas from algebraic topology and nonlinear analysis to develop efficient algorithms for robust feasibility and robust optimization. In particular, the investigator will develop a framework to derive mathematically rigorous guarantees for robust feasibility and optimization in nonlinear systems using scalable algorithms. The investigator will employ these algorithms to characterize the effects of uncertainties in nonlinear models of power systems. The investigator will also demonstrate the efficacy of the framework by testing it on large scale OPF problems.The rapid adoption of renewable energy sources such as wind and solar energy is creating increased uncertainty in modern power systems. In this project, the investigator will take a robust viewpoint of uncertainty: the worst-case impact of the uncertainty on feasibility and optimization problems will be quantified. To this end, the investigator will use ideas from algebraic topology and nonlinear analysis -- specifically Borsuk's theorem (a generalization of the intermediate value theorem) and topological degree theory -- to develop efficient algorithms for robust versions of the PF and OPF problems. On the computational side, the investigator will develop efficient implementations of these algorithms capable of scalably solving large instances of PF and OPF problems. The novel framework will combine rigorous guarantees, efficient algorithms, and the ability to handle nonlinearities. Such a framework is critical for operating modern power systems with significant uncertainty. While power systems are used as the main application area, the methods to be develop are fairly general, and could be applied to problems in other domains as well, e.g., gas distribution networks. More broadly, this project could have a direct impact on how complex and large scale infrastructure systems are handled, especially under increasing uncertainties created by the environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在计算数学中,求解方程式和优化功能在此类系统上的功能无处不在。函数或方程是非线性和/或非凸的,通常会使这些任务具有挑战性。此外,问题参数的不确定性增加了问题的复杂性。这种问题普遍存在的现代社会的关键部分是电力系统。电力系统操作中的两个中央计算是功率流(PF)研究和最佳功率流(OPF)。 PF研究确保电网状态(即,网络上的电压和流动)仍将在可接受的限制范围内保持在可接受的限制之内,尽管发生了突发事件(例如,发电机或传输线的损失)和其他不确定性(例如,需求转移或可再生能力来源,例如风和Solar)。 OPF寻求进一步选择系统中可控资产的值(例如,可以控制发电速率的发电机),以便以最低成本满足需求。这些问题具有固有的非线性和非洞穴性,因此很难以自然形式解决。该项目使用代数拓扑和非线性分析中的想法来开发有效的算法,以促进可行性和鲁棒优化。 特别是,研究人员将开发一个框架,以使用可伸缩算法在非线性系统中进行数学上严格的保证,以确保可行性和优化。 研究人员将采用这些算法来表征在功率系统非线性模型中不确定性的影响。 研究人员还将通过大规模OPF问题进行测试来证明该框架的功效。快速采用可再生能源(例如风能和太阳能)正在引起现代电力系统的不确定性。在这个项目中,研究人员将采取不确定性的强大视点:不确定性对可行性和优化问题的最坏情况将被量化。为此,研究者将使用代数拓扑和非线性分析中的思想 - 特别是Borsuk的定理(中间值定理的概括)和拓扑学位理论 - 用于开发PF和OPF问题的强大版本的有效算法。在计算方面,研究人员将开发这些算法的有效实现,能够可稳定地解决PF和OPF问题的大量实例。新颖的框架将结合严格的保证,有效的算法和处理非线性的能力。这样的框架对于操作具有重大不确定性的现代电力系统至关重要。尽管电源系统被用作主要的应用领域,但要开发的方法相当一般,也可以应用于其他域中的问题,例如气体分配网络。从更广泛的角度来看,该项目可能会直接影响复杂和大规模的基础架构系统的处理方式,尤其是在环境造成的不确定性越来越大的情况下。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous toolpath planning in a graphical framework for sparse infill additive manufacturing
- DOI:10.1016/j.cad.2020.102880
- 发表时间:2020-10-01
- 期刊:
- 影响因子:4.3
- 作者:Gupta, Prashant;Krishnamoorthy, Bala;Dreifus, Gregory
- 通讯作者:Dreifus, Gregory
Median shapes
中值形状
- DOI:10.20382/jocg.v10i1a12
- 发表时间:2019
- 期刊:
- 影响因子:0.3
- 作者:Yunfeng Hu, Matthew Hudelson
- 通讯作者:Yunfeng Hu, Matthew Hudelson
A Geometric Measure Theory Approach to Identify Complex Structural Features on Soft Matter Surfaces
- DOI:10.1021/acs.jctc.0c00260
- 发表时间:2020-07-14
- 期刊:
- 影响因子:5.5
- 作者:Alvarado, Enrique;Liu, Zhu;Clark, Aurora E.
- 通讯作者:Clark, Aurora E.
Behavior of Linear and Nonlinear Dimensionality Reduction for Collective Variable Identification of Small Molecule Solution-Phase Reactions
- DOI:10.1021/acs.jctc.1c00983
- 发表时间:2022-02-28
- 期刊:
- 影响因子:5.5
- 作者:Le, Hung M.;Kumar, Sushant;Clark, Aurora E.
- 通讯作者:Clark, Aurora E.
Euler Transformation of Polyhedral Complexes
多面体复形的欧拉变换
- DOI:10.1142/s0218195920500090
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gupta, Prashant;Krishnamoorthy, Bala
- 通讯作者:Krishnamoorthy, Bala
共 9 条
- 1
- 2
Bala Krishnamoorthy其他文献
Predicting Police Integrity: An Application of Support Vector Machines (SVM) to the Police Integrity Instrument
预测警察诚信:支持向量机 (SVM) 在警察诚信工具中的应用
- DOI:10.1007/s11417-024-09417-110.1007/s11417-024-09417-1
- 发表时间:20242024
- 期刊:
- 影响因子:1.9
- 作者:David A. Makin;Guangzhen Wu;M. Broussard;Bala KrishnamoorthyDavid A. Makin;Guangzhen Wu;M. Broussard;Bala Krishnamoorthy
- 通讯作者:Bala KrishnamoorthyBala Krishnamoorthy
Navigating the COVID-19 Data Landscape: Automated Hypothesis Generation using Topological Data Analysis
驾驭 COVID-19 数据格局:使用拓扑数据分析自动生成假设
- DOI:10.21203/rs.3.rs-470082/v110.21203/rs.3.rs-470082/v1
- 发表时间:20212021
- 期刊:
- 影响因子:0
- 作者:M. Kamruzzaman;Matthew Bielskas;Bala Krishnamoorthy;A. Marathe;A. Vullikanti;A. KalyanaramanM. Kamruzzaman;Matthew Bielskas;Bala Krishnamoorthy;A. Marathe;A. Vullikanti;A. Kalyanaraman
- 通讯作者:A. KalyanaramanA. Kalyanaraman
Emergence of multipresence - a theoretical underpinning
多重存在的出现——理论基础
- DOI:10.1504/ijbis.2018.1000919210.1504/ijbis.2018.10009192
- 发表时间:20182018
- 期刊:
- 影响因子:0
- 作者:Somesh Gaur;Bala KrishnamoorthySomesh Gaur;Bala Krishnamoorthy
- 通讯作者:Bala KrishnamoorthyBala Krishnamoorthy
Streaming Algorithms for Weighted k-Disjoint Matchings
用于加权 k-不相交匹配的流算法
- DOI:10.48550/arxiv.2311.0207310.48550/arxiv.2311.02073
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:S. Ferdous;Bhargav Samineni;A. Pothen;M. Halappanavar;Bala KrishnamoorthyS. Ferdous;Bhargav Samineni;A. Pothen;M. Halappanavar;Bala Krishnamoorthy
- 通讯作者:Bala KrishnamoorthyBala Krishnamoorthy
Structural Validation of Synthetic Power Distribution Networks Using the Multiscale Flat Norm
使用多尺度平坦范数的合成配电网络的结构验证
- DOI:10.1007/978-3-031-36027-5_510.1007/978-3-031-36027-5_5
- 发表时间:20242024
- 期刊:
- 影响因子:5.4
- 作者:Rounak Meyur;Kostiantyn Lyman;Bala Krishnamoorthy;M. HalappanavarRounak Meyur;Kostiantyn Lyman;Bala Krishnamoorthy;M. Halappanavar
- 通讯作者:M. HalappanavarM. Halappanavar
共 12 条
- 1
- 2
- 3
Bala Krishnamoorth...的其他基金
Student Travel Grant: International Workshop on Topological Data Analysis in Biomedicine, Seattle, October 2, 2016
学生旅费资助:生物医学拓扑数据分析国际研讨会,西雅图,2016 年 10 月 2 日
- 批准号:16541061654106
- 财政年份:2016
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
AF: Medium: Collaborative Research: Optimality in Homology - Algorithms and Applications
AF:媒介:协作研究:同调中的最优性 - 算法和应用
- 批准号:10646001064600
- 财政年份:2011
- 资助金额:$ 20万$ 20万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
- 批准号:42306167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效率强壮消息鉴别码的分析与设计
- 批准号:61202422
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
- 批准号:1065411510654115
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:
Older Adults Using Social Support to Improve Self-Care (OASIS): Adaption, Implementation, and Feasibility of Peer Support for Older Adults with T2DM in Appalachia
老年人利用社会支持改善自我保健 (OASIS):阿巴拉契亚地区 T2DM 老年人同伴支持的适应、实施和可行性
- 批准号:1063703110637031
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:1083164310831643
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:
Evaluation of a peer recovery support program adapted to target retention in clinic-based medication for opioid use disorder treatment
对同伴康复支持计划的评估,该计划旨在保留用于阿片类药物使用障碍治疗的临床药物
- 批准号:1080915010809150
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:
Improving the Quality of Prenatal Care for Low-Income, Black Women
提高低收入黑人女性的产前护理质量
- 批准号:1055751810557518
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别: