喵ID:VyiAVJ免责声明

Behavior of Linear and Nonlinear Dimensionality Reduction for Collective Variable Identification of Small Molecule Solution-Phase Reactions

基本信息

DOI:
10.1021/acs.jctc.1c00983
发表时间:
2022-02-28
影响因子:
5.5
通讯作者:
Clark, Aurora E.
中科院分区:
化学1区
文献类型:
Article
作者: Le, Hung M.;Kumar, Sushant;Clark, Aurora E.研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Identifying collective variables (CVs) for chemical reactions is essential to reduce the 3N-dimensional energy landscape into lower dimensional basins and barriers of interest. However, in condensed phase processes, the nonmeaningful motions of bulk solvent often overpower the ability of dimensionality reduction methods to identify correlated motions that underpin collective variables. Yet solvent can play important indirect or direct roles in reactivity, and much can be lost through treatments that remove or dampen solvent motion. This has been amply demonstrated within principal component analysis (PCA), although less is known about the behavior of nonlinear dimensionality reduction methods, e.g., uniform manifold approximation and projection (UMAP), that have become recently utilized. The latter presents an interesting alternative to linear methods though often at the expense of interpretability. This work presents distance-attenuated projection methods of atomic coordinates that facilitate the application of both PCA and UMAP to identify collective variables in the presence of explicit solvent and further the specific identity of solvent molecules that participate in chemical reactions. The performance of both methods is examined in detail for two reactions where the explicit solvent plays very different roles within the collective variables. When applied to raw molecular dynamics data in solution, both PCA and UMAP representations are dominated by bulk solvent motions. On the other hand, when applied to data preprocessed by our attenuated projection methods, both PCA and UMAP identify the appropriate collective variables (though varying sensitivity is observed due to the presence of explicit solvent that results from the projection method). Importantly, this approach allows identification of specific solvent molecules that are relevant to the CVs and their importance.
确定化学反应的集体变量(CVs)对于将3N维的能量景观简化为低维的感兴趣的盆地和势垒至关重要。然而,在凝聚相过程中,大量溶剂的无意义运动常常使降维方法识别支撑集体变量的相关运动的能力失效。然而,溶剂在反应性中可以起到重要的间接或直接作用,并且通过去除或抑制溶剂运动的处理可能会损失很多信息。这在主成分分析(PCA)中已经得到了充分证明,尽管对于非线性降维方法(例如最近开始使用的均匀流形逼近与投影(UMAP))的行为了解较少。后者是线性方法的一种有趣替代方案,尽管往往以牺牲可解释性为代价。这项工作提出了原子坐标的距离衰减投影方法,该方法有助于应用PCA和UMAP在存在显式溶剂的情况下识别集体变量,并进一步确定参与化学反应的溶剂分子的具体身份。对于两个反应,详细研究了这两种方法的性能,在这两个反应中,显式溶剂在集体变量中起着非常不同的作用。当应用于溶液中的原始分子动力学数据时,PCA和UMAP表示都主要由大量溶剂运动所主导。另一方面,当应用于通过我们的衰减投影方法预处理的数据时,PCA和UMAP都能识别出适当的集体变量(尽管由于投影方法产生的显式溶剂的存在,观察到不同的敏感性)。重要的是,这种方法可以识别与CVs相关的特定溶剂分子及其重要性。
参考文献(53)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Clark, Aurora E.
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓