喵ID:chJrMY免责声明

Streaming Algorithms for Weighted k-Disjoint Matchings

用于加权 k-不相交匹配的流算法

基本信息

DOI:
10.48550/arxiv.2311.02073
发表时间:
2023
期刊:
ArXiv
影响因子:
--
通讯作者:
Bala Krishnamoorthy
中科院分区:
文献类型:
--
作者: S. Ferdous;Bhargav Samineni;A. Pothen;M. Halappanavar;Bala Krishnamoorthy研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We design and implement two single-pass semi-streaming algorithms for the maximum weight $k$-disjoint matching ($k$-DM) problem. Given an integer $k$, the $k$-DM problem is to find $k$ pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For $k \geq 2$, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is $\frac{1}{3+\varepsilon}$-approximate. We also develop an approximation preserving reduction from $k$-DM to the maximum weight $b$-matching problem. Leveraging this reduction and an existing semi-streaming $b$-matching algorithm, we design a $\frac{k}{(2+\varepsilon)(k+1)}$-approximate semi-streaming algorithm for $k$-DM. For any constant $\varepsilon>0$, both of these algorithms require $O(nk \log_{1+\varepsilon}^2 n)$ bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the $k$-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 82 real-world and synthetic test problems. On the smaller instances, our streaming algorithms used significantly less memory (ranging from 6$\times$ to 114$\times$ less) and were faster in runtime than the offline algorithms. Our solutions were often within 5\% of the best weights from the offline algorithms. On a collection of six large graphs with a memory limit of 1 TB and with $k=8$, the offline algorithms terminated only on one graph (mycielskian20). The best offline algorithm on this instance required 640 GB of memory and 20 minutes to complete. In contrast, our slowest streaming algorithm for this instance took under four minutes and produced a matching that was 18\% better in weight, using only 1.4 GB of memory.
我们针对最大权重$k$-不相交匹配($k$-DM)问题设计并实现了两种单遍半流式算法。给定一个整数$k$,$k$-DM问题是要找到$k$对边不相交的匹配,使得这些匹配的权重之和最大。对于$k\geq2$,该问题是NP难的。我们的第一种算法基于该问题的线性规划松弛的原始 - 对偶框架,并且是$\frac{1}{3 + \varepsilon}$ - 近似的。我们还开发了一种从$k$-DM到最大权重$b$-匹配问题的近似保持归约。利用这种归约和一种现有的半流式$b$-匹配算法,我们为$k$-DM设计了一种$\frac{k}{(2 + \varepsilon)(k + 1)}$ - 近似的半流式算法。对于任何常数$\varepsilon > 0$,这两种算法都需要$O(nk\log_{1 + \varepsilon}^2 n)$位的空间。据我们所知,这是对$k$-DM问题的半流式算法的首次研究。我们在82个真实世界和合成测试问题上,将我们的两种算法与最先进的离线算法进行了比较。在较小的实例上,我们的流式算法使用的内存显著更少(少6倍到114倍不等),并且在运行时间上比离线算法更快。我们的解通常在离线算法的最佳权重的5%以内。在一组六个内存限制为1TB且$k = 8$的大型图上,离线算法仅在一个图(mycielskian20)上终止。在此实例上,最好的离线算法需要640GB的内存和20分钟才能完成。相比之下,我们在此实例上最慢的流式算法耗时不到四分钟,仅使用1.4GB的内存就生成了权重优18%的匹配。
参考文献(2)
被引文献(0)
A Parallel Approximation Algorithm for Maximizing Submodular b-Matching
最大化子模b匹配的并行逼近算法
DOI:
10.1137/1.9781611976830.5
发表时间:
2021
期刊:
Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21
影响因子:
0
作者:
Ferdous, S;Pothen, A;Khan, A.;Panyala, A.;Halappanavar, M.
通讯作者:
Halappanavar, M.

数据更新时间:{{ references.updateTime }}

Bala Krishnamoorthy
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓