Fast and Reliable Hierarchical Structured Methods for More General Matrix Computations

用于更一般矩阵计算的快速可靠的分层结构化方法

基本信息

  • 批准号:
    1819166
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Large matrix computations play a critical role in modern scientific computing tasks and engineering simulations. Realistic computations usually involve enormous amounts of data due to large dense matrices or dense intermediate matrix blocks, which makes classical matrix methods impractical. Hierarchical structured methods provide an effective and reliable way to compress and process large matrix data. In such methods, dense matrix blocks are approximated by compact structured forms that are convenient to handle. This research project aims to develop theoretical foundations for understanding multiple hierarchical structured techniques and for designing new hierarchical structured algorithms. These algorithms are expected to be applicable to more general matrix computations and challenging applications where usual structured methods are not suitable or effective.Hierarchical structured methods exploit inherent structures in matrix computations to gain high efficiency while ensuring superior stability. This project is concerned with the design, analysis, and application of fast and reliable hierarchical structured methods for broad classes of challenging computations. A unified framework will be provided to understand multiple types of hierarchical structured methods, design new hierarchical methods with enhanced applicability, and analyze their accuracy and stability. State-of-the-art fast and stable solvers will be developed for tackling challenges such as large data sizes, ill conditioning, high frequencies, and multiple frequencies. The new solvers will be applicable to a wide range of matrix computations. Based on data sparsity and enhanced stability, the solvers will significantly improve the efficiency and reliability of many computations in PDE solution, large data analysis, network, machine learning, imaging, seismic modeling, electromagnetics, etc. The research will also make fast and stable structured solvers widely accessible to broader fields and industries. The data will be included in data repositories for unrestricted access. Open-source packages and educational/tutorial materials will be freely available. The multidisciplinary project will provide excellent opportunities for graduate and undergraduate students from diverse backgrounds to closely interact and to learn critical computational and mathematical skills from multiple fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型矩阵计算在现代科学计算任务和工程模拟中起着至关重要的作用。实际的计算通常涉及大量数据,这是由于密集的矩阵或密集的中间矩阵块,这使经典矩阵方法不切实际。分层结构化方法提供了一种有效且可靠的方法来压缩和处理大型矩阵数据。在这种方法中,密集的矩阵块通过便利的处理方式近似。该研究项目旨在开发理论基础,以理解多个层次结构化技术并设计新的分层结构化算法。这些算法有望适用于更通用的矩阵计算和具有挑战性的应用,在这些应用中,通常的结构化方法不合适或有效。层次结构化方法利用矩阵计算中的固有结构,以提高效率高效率,同时确保出色的稳定性。该项目涉及快速可靠的层次结构化方法的设计,分析和应用,用于广泛的具有挑战性的计算类别。将提供一个统一的框架,以了解多种类型的层次结构化方法,设计具有增强适用性的新层次结构方法,并分析其准确性和稳定性。将开发最先进的快速和稳定求解器,以应对诸如大数据尺寸,疾病疾病,高频和多个频率之类的挑战。新求解器将适用于广泛的矩阵计算。基于数据稀疏性和增强稳定性,求解器将显着提高PDE解决方案,大数据分析,网络,机器学习,成像,地震建模,电磁学等许多计算的效率和可靠性。研究还将使快速稳定结构化的求解器可广泛地访问更广泛的领域和行业。数据将包含在数据存储库中,以进行无限制访问。开源套餐和教育/教程材料将免费提供。多学科项目将为来自不同背景的研究生和本科生提供绝佳的机会,以紧密互动,并从多个领域学习批判性的计算和数学技能。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来支持的。和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Layer Hierarchical Structures
多层层次结构
Fast Factorization Update for General Elliptic Equations Under Multiple Coefficient Updates
多系数更新下一般椭圆方程的快速因式分解更新
  • DOI:
    10.1137/18m1224623
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Liu, Xiao;Xia, Jianlin;de Hoop, Maarten
  • 通讯作者:
    de Hoop, Maarten
Analytical Low-Rank Compression via Proxy Point Selection
  • DOI:
    10.1137/19m1247838
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Ye;J. Xia;Lexing Ying
  • 通讯作者:
    Xin Ye;J. Xia;Lexing Ying
A stable matrix version of the fast multipole method: stabilization strategies and examples
Robust and Effective eSIF Preconditioning for General Dense SPD Matrices
适用于一般密集 SPD 矩阵的稳健且有效的 eSIF 预处理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianlin Xia其他文献

Single-shot dark-field imaging
单次暗场成像
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhili Wang;Dalin Liu;Kun Ren;Xiaomin Shi;Jianlin Xia
  • 通讯作者:
    Jianlin Xia
Effective matrix-free preconditioning for the augmented immersed interface method
熔盐在螺旋槽管内的转变和湍流对流换热
  • DOI:
    10.1016/j.expthermflusci.2013.01.014
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Jianlin Xia;Zhilin Li;Xin Ye
  • 通讯作者:
    Xin Ye

Jianlin Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianlin Xia', 18)}}的其他基金

Integration of Randomized Methods and Fast and Reliable Matrix Computations
随机方法与快速可靠的矩阵计算的集成
  • 批准号:
    2111007
  • 财政年份:
    2021
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Conference on Fast Direct Solvers
快速直接求解器会议
  • 批准号:
    1901567
  • 财政年份:
    2018
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CAREER: Structured Matrix Computations: Foundations, Methods, and Applications
职业:结构化矩阵计算:基础、方法和应用
  • 批准号:
    1255416
  • 财政年份:
    2013
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Efficient Sructured Direct Solvers and Robust Structured Preconditioners for Large Linear Systems and Their Applications
大型线性系统的高效结构化直接求解器和鲁棒结构化预处理器及其应用
  • 批准号:
    1115572
  • 财政年份:
    2011
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交通流分层解耦的城市路网可靠性分析及优化
  • 批准号:
    72371035
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
通信竞争异构系统中基于逆向分层的能耗与可靠性联合优化策略及方法
  • 批准号:
    61702178
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
考虑土体分层不确定性的边坡系统可靠度与关键失稳区识别方法研究
  • 批准号:
    51679174
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于子集模拟的连续体结构可靠性拓扑优化全局方法研究
  • 批准号:
    51308459
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
含分层损伤的船舶复合材料层合板可靠性研究
  • 批准号:
    51309065
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Research Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了