Integration of Randomized Methods and Fast and Reliable Matrix Computations
随机方法与快速可靠的矩阵计算的集成
基本信息
- 批准号:2111007
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In modern scientific computing, engineering simulations, and data analysis, the complexity of numerical problems and the scale of data sizes pose unique challenges to matrix computations. The demand for efficiency and reliability continues to grow, and in the meantime, researchers increasingly desire algorithms that are convenient to use. Randomized algorithms are not only convenient and fast to apply, but also powerful in the sense that they can sometimes extract surprisingly useful information from challenging situations that are otherwise very difficult to handle. This project will integrate a wide variety of randomized techniques and a sequence of novel matrix algorithms so as to build a comprehensive framework for fast, reliable, and flexible randomized matrix computations. The project will bridge the gap between convenient randomized ideas and various challenging numerical tasks. Innovative randomized methods will be designed to extract valuable information in numerical computations and also to guide algorithm design and parameter tuning. The project will help effectively make randomized strategies more widely accessible to broader scientific communities. It will help introduce novel randomized algorithms into various numerical analysis fields and can also significantly improve the efficiency and reliability of many practical computational tasks in application fields such as data science, image processing, geosciences, and engineering. The research results will be widely disseminated via multiple channels. The project will give students a nice platform to gain knowledge in different areas such as numerical analysis, statistics, and data analysis. Relevant course materials will be developed. Open-source software packages will be designed.The research will seamlessly integrate a wide variety of randomized techniques and a sequence of novel matrix algorithms. The research will result in a series of novel randomized methods for computations such as low-rank approximation, data-sparse preconditioning, and eigenvalue solution. Rigorous theories will be given to understand the effectiveness of the proposed methods and also to establish connections between randomized algorithms and various challenging numerical tasks. Unlike the usual compromise between efficiency and reliability in many randomized strategies, the integration of multiple randomized techniques and novel matrix computations can achieve the combined benefits of flexibility, convenience, efficiency, and also reliability. The studies can further help uncover intrinsic matrix properties that can be used to design robust numerical algorithms for handling difficult situations. The new analysis and randomized methods will help make matrix computations better meet the rapidly emerging challenges of modern computational tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代科学计算,工程模拟和数据分析中,数值问题的复杂性和数据规模对矩阵计算构成了独特的挑战。对效率和可靠性的需求不断增长,与此同时,研究人员越来越希望使用方便使用的算法。随机算法不仅是方便且快速应用的,而且在某种意义上,它们有时可以从挑战性的情况下提取出令人惊讶的有用信息,而这些信息原本很难处理。该项目将集成多种随机技术和一系列新型矩阵算法,从而为快速,可靠和灵活的随机矩阵计算构建综合框架。该项目将弥合方便的随机思想和各种具有挑战性的数字任务之间的差距。创新的随机方法将旨在在数值计算中提取有价值的信息,并指导算法设计和参数调整。该项目将有助于使更广泛的科学社区更广泛地使随机策略更广泛地访问。它将有助于将新颖的随机算法引入各种数值分析字段,还可以显着提高应用程序领域中许多实用计算任务的效率和可靠性,例如数据科学,图像处理,地球科学和工程。研究结果将通过多个通道广泛传播。该项目将为学生提供一个很好的平台,以在不同领域(例如数值分析,统计和数据分析)中获得知识。相关课程材料将开发。将设计开源软件包。研究将无缝整合多种随机技术和一系列新型矩阵算法。这项研究将导致一系列新型的随机方法,用于计算,例如低级别近似,数据范围的预处理和特征值解决方案。将有严格的理论了解拟议方法的有效性,并在随机算法和各种具有挑战性的数值任务之间建立联系。与许多随机策略中效率和可靠性之间的通常折衷不同,多种随机技术和新型矩阵计算的整合可以实现灵活性,便利性,效率以及可靠性的综合益处。这些研究可以进一步有助于发现固有的矩阵特性,这些特性可用于设计用于处理困难情况的强大数值算法。新的分析和随机方法将有助于使矩阵计算更好地应对现代计算任务的快速促进的挑战。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank‐structured approximation of some Cauchy matrices with sublinear complexity
一些具有次线性复杂度的柯西矩阵的Rank-结构化近似
- DOI:10.1002/nla.2526
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Lepilov, Mikhail;Xia, Jianlin
- 通讯作者:Xia, Jianlin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianlin Xia其他文献
Single-shot dark-field imaging
单次暗场成像
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.8
- 作者:
Zhili Wang;Dalin Liu;Kun Ren;Xiaomin Shi;Jianlin Xia - 通讯作者:
Jianlin Xia
Effective matrix-free preconditioning for the augmented immersed interface method
熔盐在螺旋槽管内的转变和湍流对流换热
- DOI:
10.1016/j.expthermflusci.2013.01.014 - 发表时间:
2015 - 期刊:
- 影响因子:4.1
- 作者:
Jianlin Xia;Zhilin Li;Xin Ye - 通讯作者:
Xin Ye
Jianlin Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianlin Xia', 18)}}的其他基金
Fast and Reliable Hierarchical Structured Methods for More General Matrix Computations
用于更一般矩阵计算的快速可靠的分层结构化方法
- 批准号:
1819166 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Structured Matrix Computations: Foundations, Methods, and Applications
职业:结构化矩阵计算:基础、方法和应用
- 批准号:
1255416 - 财政年份:2013
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Efficient Sructured Direct Solvers and Robust Structured Preconditioners for Large Linear Systems and Their Applications
大型线性系统的高效结构化直接求解器和鲁棒结构化预处理器及其应用
- 批准号:
1115572 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
基于孟德尔随机化法和随机回归模型建立纵向性状全转录组关联分析新方法
- 批准号:32370675
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于校正样本重叠和多效性偏倚的孟德尔随机化方法及在因果推断中的应用
- 批准号:82304251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多表型孟德尔随机化统计方法研究及在妊娠糖尿病与子代心血管健康关联中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于适应性随机化理论的混合臂试验设计方法及其因果推断模型研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于随机化方法的量化神经网络训练理论及算法研究
- 批准号:62106120
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Proteomic Signatures Associated with Right Ventricular Failure and Mortality in Pulmonary Arterial Hypertension
与肺动脉高压右心室衰竭和死亡率相关的蛋白质组学特征
- 批准号:
10675409 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
School-Partnered Collaborative Care (SPACE) for Pediatric Type 1 Diabetes
针对儿童 1 型糖尿病的学校合作协作护理 (SPACE)
- 批准号:
10640614 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Implementing the NYU Electronic Patient Visit Assessment (ePVA) for Head and Neck Cancer In Rural and Urban Populations
在农村和城市人群中实施纽约大学电子患者就诊评估 (ePVA) 来评估头颈癌
- 批准号:
10715478 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别: