SaTC: CORE: Medium: Collaborative: Using Machine Learning to Build More Resilient and Transparent Computer Systems
SaTC:核心:媒介:协作:使用机器学习构建更具弹性和透明的计算机系统
基本信息
- 批准号:1801494
- 负责人:
- 金额:$ 33.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning algorithms are increasingly part of everyday life: they help power the ads that we see while browsing the web, self-driving aids in modern cars, and even weather prediction and critical infrastructure. We rely on these algorithms in part because they perform better than alternatives and they can be easy to customize to new applications. Many machine learning algorithms also have a big weakness: it is difficult to understand how and why they compute the answers they provide. This opaqueness means that the answers we get from a machine learning algorithm could be subtly biased or even completely wrong, and yet we might not realize it. This project's goal is to make machine learning algorithms easier to understand, as well as to leverage some of the techniques used by attackers to trick machine learning algorithms into making mistakes to build computer systems that are more resistant to attack. In addition to making fundamental contributions to how machine learning algorithms are designed and used, the project includes outreach efforts that will entice students to gain hands-on experience with machine learning tools.This project focuses on deep neural networks (DNNs). A groundswell of research within the past five years has demonstrated the propensity of these models to being evaded by inputs created to fool them -- so called "adversarial examples." These types of attacks leverage DNNs' opacity: while DNNs can perform remarkably well on some classification tasks, they often defy simple explanations of how they do so, and indeed can leverage features for doing so that humans might find surprising. This project leverages DNNs and the attacks against them to gain insights into how to build more resilient computer systems. Specifically, the project will use DNNs to model adversaries trying to attack computer systems and then "attack" these DNNs to learn how to improve these systems' resilience to attack. This modeling will be done using Generative Adversarial Nets (GANs), in which "generator" and "discriminator" models compete. Central to this vision are the abilities to evade DNNs under constraints and to extract explanations from them about how they perform classification. Consequently, this project will make fundamental advances both in developing better methods to deceive DNNs and in improving this important machine-learning tool.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法越来越成为日常生活的一部分:它们帮助我们浏览网页时看到的广告、现代汽车的自动驾驶辅助设备,甚至天气预报和关键基础设施。我们依赖这些算法的部分原因是它们的性能比其他算法更好,并且可以轻松定制以适应新的应用程序。许多机器学习算法也有一个很大的弱点:很难理解它们如何以及为什么计算它们提供的答案。这种不透明性意味着我们从机器学习算法得到的答案可能存在微妙的偏差,甚至完全错误,但我们可能没有意识到这一点。该项目的目标是使机器学习算法更容易理解,并利用攻击者使用的一些技术来欺骗机器学习算法犯错误,以构建更能抵抗攻击的计算机系统。除了对机器学习算法的设计和使用做出基本贡献外,该项目还包括外展工作,以吸引学生获得机器学习工具的实践经验。该项目重点关注深度神经网络(DNN)。 过去五年的大量研究表明,这些模型很容易被用来愚弄它们的输入所规避——即所谓的“对抗性例子”。这些类型的攻击利用了 DNN 的不透明性:虽然 DNN 在某些分类任务上可以表现得非常好,但它们常常无法简单解释它们是如何做到这一点的,而且实际上可以利用一些特征来做到这一点,这样人类可能会感到惊讶。该项目利用 DNN 和针对它们的攻击来深入了解如何构建更具弹性的计算机系统。具体来说,该项目将使用 DNN 对试图攻击计算机系统的对手进行建模,然后“攻击”这些 DNN,以了解如何提高这些系统的攻击弹性。该建模将使用生成对抗网络(GAN)完成,其中“生成器”和“鉴别器”模型相互竞争。这一愿景的核心是能够在约束下规避 DNN,并从中提取有关它们如何执行分类的解释。因此,该项目将在开发更好的方法来欺骗 DNN 和改进这一重要的机器学习工具方面取得根本性进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical Privacy for Streaming Traffic
流媒体流量的统计隐私
- DOI:10.14722/ndss.2019.23210
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Zhang, Xiaokuan;Hamm, Jihun;Reiter, Michael K.;Zhang, Yinqian
- 通讯作者:Zhang, Yinqian
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
恶意软件改造:通过修改可执行字节破坏基于 ML 的静态分析
- DOI:10.1145/3433210.3453086
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Lucas, Keane;Sharif, Mahmood;Bauer, Lujo;Reiter, Michael K.;Shintre, Saurabh
- 通讯作者:Shintre, Saurabh
A General Framework for Adversarial Examples with Objectives
具有目标的对抗性示例的通用框架
- DOI:10.1145/3317611
- 发表时间:2019-06
- 期刊:
- 影响因子:2.3
- 作者:Sharif, Mahmood;Bhagavatula, Sruti;Bauer, Lujo;Reiter, Michael K.
- 通讯作者:Reiter, Michael K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Reiter其他文献
Conventional Workflow Technology for Scientific Simulation
用于科学模拟的传统工作流程技术
- DOI:
10.1007/978-0-85729-439-5_12 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
K. Görlach;Mirko Sonntag;Dimka Karastoyanova;F. Leymann;Michael Reiter - 通讯作者:
Michael Reiter
On CR maps between hyperquadrics and Winkelmann hypersurfaces
在超二次曲面和 Winkelmann 超曲面之间的 CR 映射上
- DOI:
10.1016/j.jgeb.2023.100342 - 发表时间:
2024-04-25 - 期刊:
- 影响因子:0
- 作者:
Michael Reiter;D. Son - 通讯作者:
D. Son
Complete biosynthesis of cannabinoids and their unnatural analogues in yeast (2019) (vol 567, pg 123, 2019)
酵母中大麻素及其非天然类似物的完整生物合成(2019)(第 567 卷,第 123 页,2019)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:64.8
- 作者:
Xiaozhou Luo;Michael Reiter;Leo d’Espaux;Jeff Wong;Charles M. Denby;Anna Lechner;Yunfeng Zhang;Adrian T Grzybowski;Simon Harth;Weiyin Lin;Hyunsu Lee;Changhua Yu;John Shin;Kai Deng;V. Benites;G. Wang;Baidoo Eek;Yan Chen;Ishaan Dev;Christopher J. Petzold;Jay D. Keasling - 通讯作者:
Jay D. Keasling
A Classification of BPEL Extensions
BPEL 扩展的分类
- DOI:
10.20470/jsi.v2i4.103 - 发表时间:
2011-10-19 - 期刊:
- 影响因子:0
- 作者:
Oliver Kopp;K. Görlach;Dimka Karastoyanova;F. Leymann;Michael Reiter;D. Schumm;Mirko Sonntag;Steve Strauch;Tobias Unger;Matthias Wiel;Rania Khalaf - 通讯作者:
Rania Khalaf
Process space-based scientific workflow enactment
制定天基科学工作流程
- DOI:
10.1504/ijbpim.2010.033173 - 发表时间:
2010-05-11 - 期刊:
- 影响因子:0
- 作者:
Mirko Sonntag;K. Görlach;Dimka Karastoyanova;F. Leymann;Michael Reiter - 通讯作者:
Michael Reiter
Michael Reiter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Reiter', 18)}}的其他基金
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2022 Secure and Trustworthy Cyberspace PI Meeting
协作研究:会议:2022年安全可信网络空间PI会议
- 批准号:
2205940 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
- 批准号:
2207214 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2022 Secure and Trustworthy Cyberspace PI Meeting
协作研究:会议:2022年安全可信网络空间PI会议
- 批准号:
2205940 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Using Machine Learning to Build More Resilient and Transparent Computer Systems
SaTC:核心:媒介:协作:使用机器学习构建更具弹性和透明的计算机系统
- 批准号:
2113345 - 财政年份:2021
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
- 批准号:
1535917 - 财政年份:2015
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
TWC: Frontier: Collaborative: Rethinking Security in the Era of Cloud Computing
TWC:前沿:协作:重新思考云计算时代的安全性
- 批准号:
1330599 - 财政年份:2013
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
TWC SBES: Medium: Collaborative: Crowdsourcing Security
TWC SBES:媒介:协作:众包安全
- 批准号:
1228471 - 财政年份:2012
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
TC: Small: Server-side Verification of Client Behavior in Distributed Applications
TC:小型:分布式应用程序中客户端行为的服务器端验证
- 批准号:
1115948 - 财政年份:2011
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
FIA: Collaborative Research: MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet
FIA:协作研究:MobilityFirst:面向未来互联网的稳健且值得信赖的以移动为中心的架构
- 批准号:
1040626 - 财政年份:2010
- 资助金额:
$ 33.33万 - 项目类别:
Standard Grant
相似国自然基金
中等质量丰中子核区的新核结构模型方法
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
伏隔核D1/D2共表达中等多棘神经元在孤独症小鼠社交奖赏障碍中的作用及机制研究
- 批准号:81901381
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
星系中心的中等质量黑洞研究
- 批准号:11473062
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
过渡区中等质量原子核结构的配对壳模型研究
- 批准号:11305101
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中等和大质量黑洞的潮汐瓦解及其吸积与辐射
- 批准号:10873015
- 批准年份:2008
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
- 批准号:
2318290 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 33.33万 - 项目类别:
Continuing Grant