Collaborative Research: Mining Seismic Wavefields
合作研究:挖掘地震波场
基本信息
- 批准号:1818579
- 负责人:
- 金额:$ 12.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will fund continued development of methods to process huge volumes of seismic waveform data. This will lead to a great increase in the number of located and characterized seismic events of various kinds and will potentially identify patterns in earthquake occurrence that could inform hazard and near-term rupture forecasting. The initial "Mining Seismic Wavefields" NSF Geoinformatics grant has led to significant progress dealing with data volumes that would have been impossible to process when the project began. This award will fund an additional year of that effort and will maintain this momentum in technique development to complete the analysis of proof-of-concept projects on vast waveform data sets, and to deploy the cyberinfrastructure for wider use by the seismological community.The premise of the research is that continuous and/or densely recorded data coupled with high performance computing and scalable algorithms can enable a network-based approach to earthquake detection that greatly improves the detection of weak and unusual events that would be difficult or impossible to detect using traditional approaches. Numerous seismological observations confirm that proximal earthquake sources generate similar signals. Exploiting the discriminative power of this similarity has led to many fundamental discoveries; however, most similarity-based detection methods require prior knowledge of the source waveform, or template. Blind/uninformed search for signals having unknown signatures based on pair-wise or multiple matches has seen some success, but naïve implementations of this approach suffer from quadratic scaling of computation with time such that problems of interest are inaccessible even for the most capable computers. Similarly, for dense networks, the availability of continuous waveform data motivates alternative detection schemes based on waveform similarity at adjacent stations. This project will further develop efficient data-mining techniques to enable scalable similarity search of seismic wavefields. Technical challenges to be addressed as part of the research for spatially sparse recording are to develop improved similarity-preserving compression for repeating signals detected over a network, and to improve post-processing of search output that will both isolate signals of seismological interest and minimize false detections. For spatially dense recording, this would extend recently developed wavefield matching techniques to similarity across adjacent stations, which would enable similarity search across unaliased elastic wavefields in four dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第三个将为COD提供对位置的地震波形数据的处理,并表征了各种各样的地震事件,并且可以在地球上识别可能会为ZARD和接近末期破裂的预测中识别出的模式。对于具有数据s的重要程序,当技术开发的动力开发到大量波形数据集的证明概念以及地震学界的更广泛使用时,这是无法处理的。连续和/或密集的数据与高性能计算和可扩展算法结合使用,可以用基于工作的地震检测方法,从而极大地改善了弱和不寻常的事件,这些事件可用于使用传统的地震来源。利用歧视的区别,uire的源头或模板的知识。 t的t也无法访问,即基于相邻陈述的波形相似性的密集网络的功能在网络上检测到的重复信号,并改善后电流输出,以使Seismologalst Andiz e false检测到空间密集的记录。该奖项反映了NSF'SFFly的使命,并使用基金会的知识分子优点和更广泛的影响评估标准进行了评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Earthquake Fingerprints: Extracting Waveform Features for Similarity-Based Earthquake Detection
- DOI:10.1007/s00024-018-1995-6
- 发表时间:2018-10
- 期刊:
- 影响因子:2
- 作者:K. Bergen;G. Beroza
- 通讯作者:K. Bergen;G. Beroza
Machine learning for data-driven discovery in solid Earth geoscience
- DOI:10.1126/science.aau0323
- 发表时间:2019-03-22
- 期刊:
- 影响因子:56.9
- 作者:Bergen, Karianne J.;Johnson, Paul A.;Beroza, Gregory C.
- 通讯作者:Beroza, Gregory C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Beroza其他文献
Gregory Beroza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Beroza', 18)}}的其他基金
Seafloor Fiber Optic Array in Monterey Bay (SEAFOAM)
蒙特利湾海底光纤阵列 (SEAFOAM)
- 批准号:
2023301 - 财政年份:2020
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
The Second Cargese School on Earthquakes - Participant Support
第二届 Cargese 地震学校 - 参与者支持
- 批准号:
1743284 - 财政年份:2017
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Collaborative Research: Mining Seismic Wavefields
合作研究:挖掘地震波场
- 批准号:
1551462 - 财政年份:2016
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Ground Motion Prediction Using Virtual Earthquakes
使用虚拟地震进行地面运动预测
- 批准号:
1520867 - 财政年份:2015
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant
The Bucaramanga Nest: A Natural Laboratory for Exploring the Mechanics of Intermediate Depth Earthquakes
布卡拉曼加巢:探索中深度地震力学的天然实验室
- 批准号:
1045684 - 财政年份:2011
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Long-Period Strong Ground Motion Prediction Using the Ambient Seismic Field
利用环境地震场进行长周期强地震动预测
- 批准号:
0943885 - 财政年份:2010
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Towards a Comprehensive Understanding of Episodic Tremor and Slip
全面了解阵发性震颤和滑倒
- 批准号:
0710835 - 财政年份:2007
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant
The Mechanics of Subduction in Japan from High-Precision Earthquake Location and Tomography
从高精度地震定位和断层扫描研究日本俯冲机制
- 批准号:
0409917 - 财政年份:2004
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant
Radiated Seismic Energy from Very Small and Very Large Earthquakes
非常小和非常大的地震辐射的地震能量
- 批准号:
0208499 - 财政年份:2002
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant
Dynamic-Stochastic Modeling of Earthquake Rupture and Strong Ground Motion
地震破裂和强地震动的动态随机建模
- 批准号:
0106823 - 财政年份:2001
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
相似国自然基金
土壤微生物间相互作用对矿业废弃地生态修复的影响研究
- 批准号:42307020
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
企业所有制异质性视角下的中国海外矿业投资多尺度嵌入研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多要素生态风险过程的矿业城市空间格局优化方法研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
矿业、石油与安全学科发展战略研究报告(2021-2025)
- 批准号:51942402
- 批准年份:2019
- 资助金额:15 万元
- 项目类别:专项基金项目
矿业生产调度优化方法研究
- 批准号:71871064
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 12.41万 - 项目类别:
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电路
- 批准号:
2328464 - 财政年份:2023
- 资助金额:
$ 12.41万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 12.41万 - 项目类别:
Continuing Grant