Fundamental principles, limits, and function of ultrafast motion in single cell organisms
单细胞生物超快运动的基本原理、限制和功能
基本信息
- 批准号:1817334
- 负责人:
- 金额:$ 79.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Contrary to popular notion, the fastest movements in biology are not exhibited by large, multicellular animals such as a sprinting cheetahs or Usain Bolt, but by obscure, tiny microscopic single cell organisms. How a seemingly simple cell may generate extraordinary power and speed, without muscles, remains an open question. To address this critical knowledge gap, this project will study an extreme unicellular organism (Spirostomum ambiguum) that harnesses poorly understood molecular motors, springs and latches to achieve some of the fastest and most powerful movements in nature. In addition to advancing our knowledge of cell biology, insights from this project holds potential for a breakthrough in nanoscale engineering, including design of powerful micro-robots. The PI will involve young scientists across all levels in cell biophysics research including K-12, undergraduate and under-represented minority students in the Atlanta area. The PI will also host high-school summer interns in partnership with Lambert High School. Research findings and scientific discoveries will be shared with the broader public through popular media outlets including, popular media, YouTube, and the local Atlanta Science Festival. Spirostomum is a relatively large protozoan, which moves via a controllable-triggered myoneme. It is an excellent model system to understand fundamental questions of achieving extraordinary power amplification at the scale of a single cell. The proposed research will integrate tools and techniques from biology, physics and mathematics to develop a multi-scale framework that establishes: i) the governing principles for force generation through calcium-based supramolecular protein networks (i.e., myonemes); ii) the physical limits on speed imposed by both cellular material properties and viscous energetic dissipation to environment; and iii), collective hydrodynamic communication and sensing through ultra fast group contractions in single cells.This project is jointly funded by Molecular and Cellular Biosciences and the Physics of Living SystemsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与流行的概念相反,生物学中最快的动作不是由大型多细胞动物(例如冲刺的猎豹或Usain螺栓)展示的,而是通过晦涩的微小单细胞生物来表现出来。看似简单的细胞如何产生非凡的力量和速度,而没有肌肉仍然是一个悬而未决的问题。为了解决这个关键的知识差距,该项目将研究一种极端的单细胞生物(Spirostomum Ambiguum),该生物可以利用熟悉的分子电动机,弹簧和闩锁,以实现自然界中一些最快,最强大的运动。除了促进细胞生物学知识外,该项目的见解还具有突破性的纳米级工程,包括设计强大的微型机器人。 PI将参与各个级别的年轻科学家参与细胞生物物理学研究,包括亚特兰大地区的K-12,本科和代表性不足的少数族裔学生。 PI还将与兰伯特高中合作主持高中暑期实习生。研究发现和科学发现将通过流行媒体(包括流行媒体,YouTube和当地亚特兰大科学节)与更广泛的公众共享。 Spirostomum是一种相对较大的原生动物,它通过可控的触发肌动物移动。 它是一个很好的模型系统,可以理解在单个单元格的规模上实现非凡功率扩增的基本问题。拟议的研究将整合来自生物学,物理和数学的工具和技术,以开发一个建立的多尺度框架:i)通过基于钙的超分子蛋白质网络(即肌酸)通过基于钙的上型超分子蛋白网络来产生强制的原理; ii)细胞材料特性和粘性能量耗散对环境施加的速度的物理限制;和iii),通过单个单元格中超快速组收缩进行集体流体动力沟通和传感。该项目由分子和细胞生物科学共同资助,而生命系统奖的物理学则反映了NSF的法定任务,并被认为是通过该基金会的知识分子和更广泛的影响来评估的支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous entangled active matter
非晶态缠结活性物质
- DOI:10.1039/d2sm01573k
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Savoie, William;Tuazon, Harry;Tiwari, Ishant;Bhamla, M. Saad;Goldman, Daniel I.
- 通讯作者:Goldman, Daniel I.
Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs
水生蠕虫斑点中氧合控制的集体动力学
- DOI:10.1093/icb/icac089
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Tuazon, Harry;Kaufman, Emily;Goldman, Daniel I.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Ultrafast launch of slingshot spiders using conical silk webs
- DOI:10.1016/j.cub.2020.06.076
- 发表时间:2020-08-17
- 期刊:
- 影响因子:9.2
- 作者:Alexander, Symone L. M.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots
- DOI:10.1088/1748-3190/acdb1c
- 发表时间:2023-09-01
- 期刊:
- 影响因子:3.4
- 作者:Ortega-Jimenez,Victor M.;Jusufi,Ardian;Bhamla,M. Saad
- 通讯作者:Bhamla,M. Saad
Collective intercellular communication through ultra-fast hydrodynamic trigger waves
- DOI:10.1038/s41586-019-1387-9
- 发表时间:2019-07-25
- 期刊:
- 影响因子:64.8
- 作者:Mathijssen, Arnold J. T. M.;Culver, Joshua;Prakash, Manu
- 通讯作者:Prakash, Manu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saad Bhamla其他文献
Epineuston vortex recapture enhances thrust in tiny water skaters
Epineuston 涡流重新捕获增强了小型滑水者的推力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pankaj Rohilla;Johnathan N. O’Neil;Chandan Bose;Victor M. Ortega;Daehyun Choi;Saad Bhamla - 通讯作者:
Saad Bhamla
<em>De novo</em> ATP-independent contractile protein network
- DOI:
10.1016/j.bpj.2023.11.3261 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Xiangting Lei;Carlos Floyd;Tuhin Charkbortty;Scott M. Coyle;Jerry E. Honts;Aaron Dinner;Suriyanarayanan Vaikuntanathan;Saad Bhamla - 通讯作者:
Saad Bhamla
Saad Bhamla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saad Bhamla', 18)}}的其他基金
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
- 批准号:
2243698 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
IRES Track1: In-situ Jungle Biomechanics Laboratory (JBL) Research Experience in the Amazon Rainforest
IRES Track1:亚马逊雨林原位丛林生物力学实验室 (JBL) 研究经验
- 批准号:
2246236 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
- 批准号:
2337788 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
- 批准号:
2313724 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
I-Corps: Delivery system for gene-based medicines
I-Corps:基因药物输送系统
- 批准号:
2120291 - 财政年份:2021
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms
职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限
- 批准号:
1941933 - 财政年份:2020
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
- 批准号:
1935262 - 财政年份:2019
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
相似国自然基金
基于“碳循”原则的模块化建筑隐含碳排放系统测算和协同优化研究
- 批准号:72301232
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
手性液晶超结构的构筑原则与调控机制
- 批准号:22373089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
完全统计学习原则下的零经验风险记忆学习研究
- 批准号:62366035
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
染色质空间结构的设计原则与随机动力学
- 批准号:12301646
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于“谁受益谁付费”原则的电网替代性储能成本疏导机制研究
- 批准号:72304056
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant