CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms

职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限

基本信息

  • 批准号:
    1941933
  • 负责人:
  • 金额:
    $ 99.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

In nature, certain small organisms can achieve ultrafast accelerations of millions of g-forces in nanoseconds. These extreme organisms exploit unusual elastic spring and latch structures to generate extraordinary amounts of power, far outperforming human-engineered robotic systems. However, how these diverse systems, from microscopic single cells to millimeter-sized spiders, generate high power and survive the tremendous forces generated during rapid motion remains unclear. To address this crucial knowledge gap, this project will combine mathematical theory, biological experiments, and physical modeling to better understand ultrafast motion in animals. Beyond advancing fundamental biomechanics, this work could contribute to development of faster, smaller, and stronger robots that use elastic power amplifiers. The project will support science training at many levels, including K-12, undergraduate, graduate, and postdoctoral stages. Research and training activities will broaden the participation of students from under-represented minority backgrounds in the physics of living systems. The researcher will develop a field-based invertebrate biomechanics course to bring students from many backgrounds into the rainforest to study the biophysics of ultrafast living systems. Research findings of this work will be disseminated through multiple outlets including live demonstrations at the Atlanta Zoo, bilingual comic books, and social media outlets such as YouTube and Twitter.Important gaps remain in the understanding of mechanics extreme biological spring-latch systems, which rapidly amplify power input to repeatably deliver high power at small length scales. This project will develop slingshot spiders as a new model organism for studying ultrafast motion. By storing elastic energy in an extraordinary 3-D web topology, slingshot spiders can repeatedly hurl themselves and their webs at flying insects in less than 20 milliseconds with accelerations exceeding 130g. Webs made of elastic silk actuated by hydraulically controlled legs comprise an exception springs/latch system, thus slingshot spiders are excellent models for fundamental questions concerning elastic mechanisms. Their webs and legs are ideally suited to material characterization and modelling in both lab and field environments. The principal investigator will bring high-speed instrumentation into the Peruvian Amazon to capture the ultrafast dynamics of these extreme arachnids. Combining in-situ force measurements and modeling, this research will probe fine-tuning and integration of mechanical properties of the web (spring) and hydraulic mechanics of the spider’s legs (latch) and will analyze how power amplification is maximized for a spider of a given size. This work will apply the physics of damped harmonic oscillators to reveal how slingshot webs dissipate energy and enable repetitive loading with minimum damage. By bringing low-cost, portable scientific tools to rainforests (Jungle invertebrates Biomechanics Laboratory), the project will train future scientists in invertebrate biomechanics and expand the range of potential model organisms. By developing bilingual comics (Curious Zoo of Crazy Organisms), this work will bridge language barriers in science communication to Hispanic populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,某些小生物可以实现纳米秒数百万g强化的超快加速度。这些极端的生物利用异常的弹性弹簧和闩锁结构产生了非凡的功率,远远超过了人工工程的机器人系统。但是,这些不同的系统如何从微观单细胞到毫米大小的蜘蛛产生高功率并在快速运动过程中产生的巨大力量生存。为了解决这个关键的知识差距,该项目将结合数学理论,生物学实验和物理建模,以更好地了解动物的超快运动。除了推进基本生物力学外,这项工作还可以有助于使用弹性功率放大器的更快,更小,更强的机器人的发展。该项目将支持许多级别的科学培训,包括K-12,本科,研究生和博士后阶段。研究和培训活动将扩大来自代表性不足的少数群体背景的学生参与生活系统物理学的参与。研究人员将开发基于现场的无脊椎动物生物力学课程,将来自许多背景的学生带入雨林,以研究超快生活系统的生物物理学。这项工作的研究结果将通过多个媒体进行分散,包括亚特兰大动物园的现场演示,双语漫画书以及YouTube和Twitter等社交媒体渠道。对机械的极端生物学弹簧段系统的理解仍然存在,这些差距快速地扩大了电源输入,以便在小长度尺度上反复传递电源。该项目将开发弹弓蜘蛛作为研究超快运动的新模型生物。通过将弹性能量存储在非凡的3-D网络拓扑中,弹弓蜘蛛可以反复将自己和网站以不到20毫秒的速度飞行,而加速度超过130克。由Hydromody Controled腿激活的弹性丝制成的网络包括一个异常的弹簧/闩锁系统,因此弹弓蜘蛛是有关弹性机制的基本问题的绝佳模型。他们的网和腿非常适合在实验室和现场环境中进行物质表征和建模。首席研究人员将将高速仪器带入秘鲁亚马逊,以捕获这些极端蛛网的超快动态。结合原位力测量和建模,这项研究将探测蜘蛛腿的机械性能(弹簧)的机械性能(弹簧)的机械性能(闩锁)(闩锁)(闩锁),并将分析对给定尺寸的蜘蛛的功率扩增的最大化。这项工作将应用该死的谐波振荡器的物理学,以揭示弹弓网如何消散能量并使重复负载施加最小损坏。通过将低成本的便携式科学工具带入雨林(丛林无脊椎动物生物力学实验室),该项目将培训未来的无脊椎动物生物力学的科学家,并扩大潜在模型生物的范围。通过开发双语漫画(好奇的疯狂生物动物园),这项工作将在科学沟通中桥接语言障碍,向西班牙裔人群桥接。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估评估来获得支持的。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous entangled active matter
非晶态缠结活性物质
  • DOI:
    10.1039/d2sm01573k
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Savoie, William;Tuazon, Harry;Tiwari, Ishant;Bhamla, M. Saad;Goldman, Daniel I.
  • 通讯作者:
    Goldman, Daniel I.
Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs
水生蠕虫斑点中氧合控制的集体动力学
  • DOI:
    10.1093/icb/icac089
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Tuazon, Harry;Kaufman, Emily;Goldman, Daniel I.;Bhamla, M. Saad
  • 通讯作者:
    Bhamla, M. Saad
The ultrafast snap of a finger is mediated by skin friction
  • DOI:
    10.1098/rsif.2021.0672
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Acharya, Raghav;Challita, Elio J.;Bhamla, M. Saad
  • 通讯作者:
    Bhamla, M. Saad
Ultrafast launch of slingshot spiders using conical silk webs
  • DOI:
    10.1016/j.cub.2020.06.076
  • 发表时间:
    2020-08-17
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Alexander, Symone L. M.;Bhamla, M. Saad
  • 通讯作者:
    Bhamla, M. Saad
Collective dynamics in entangled worm and robot blobs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saad Bhamla其他文献

Controlling noisy herds
控制喧闹的牛群
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Chakrabortty;Saad Bhamla
  • 通讯作者:
    Saad Bhamla
Epineuston vortex recapture enhances thrust in tiny water skaters
Epineuston 涡流重新捕获增强了小型滑水者的推力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj Rohilla;Johnathan N. O’Neil;Chandan Bose;Victor M. Ortega;Daehyun Choi;Saad Bhamla
  • 通讯作者:
    Saad Bhamla
<em>De novo</em> ATP-independent contractile protein network
  • DOI:
    10.1016/j.bpj.2023.11.3261
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangting Lei;Carlos Floyd;Tuhin Charkbortty;Scott M. Coyle;Jerry E. Honts;Aaron Dinner;Suriyanarayanan Vaikuntanathan;Saad Bhamla
  • 通讯作者:
    Saad Bhamla

Saad Bhamla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saad Bhamla', 18)}}的其他基金

Physics of Living Tangled Matter
生命缠结物质的物理学
  • 批准号:
    2310691
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
  • 批准号:
    2243698
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
IRES Track1: In-situ Jungle Biomechanics Laboratory (JBL) Research Experience in the Amazon Rainforest
IRES Track1:亚马逊雨林原位丛林生物力学实验室 (JBL) 研究经验
  • 批准号:
    2246236
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
  • 批准号:
    2337788
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313724
  • 财政年份:
    2023
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218382
  • 财政年份:
    2022
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
I-Corps: Delivery system for gene-based medicines
I-Corps:基因药物输送系统
  • 批准号:
    2120291
  • 财政年份:
    2021
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
  • 批准号:
    1935262
  • 财政年份:
    2019
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
Fundamental principles, limits, and function of ultrafast motion in single cell organisms
单细胞生物超快运动的基本原理、限制和功能
  • 批准号:
    1817334
  • 财政年份:
    2018
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
  • 批准号:
    52378230
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Research Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 99.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了