CSR: Small:Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
基本信息
- 批准号:1815047
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ever-increasing number of Internet of Things (IoT) devices generate large quantities of raw data that need to be processed and analyzed in real time. Since conducting computationally expensive tasks, such as computer vision and natural language processing, is often a challenge for IoT devices, most of their computations are currently offloaded to cloud servers. However, this offloading leads to an increased risk for privacy as well as a dependency on network connectivity. To solve this challenge, the project utilizes the distributed computing power of already connected IoT devices to perform high computing power applications in real time.The project is composed of three tasks. First is the development of distributed machine learning (ML) systems for multiple IoT devices. The project will involve studying how to communicate between nodes with reliable connections and how to dynamically change the job of each node at run-time with little overhead. Second is the development of optimal task assignment and scheduling algorithms. Here, a machine learning approach will be used to generate a recognition model architecture optimal for each distributed system configuration. Third is the development of low-resolution deep neural network (DNN) systems to utilize low-power computing nodes. The development of these DNN systems will involve identifying multiple low-resolution filters that are optimal for varying configurations.The proposed technical work will advance the state of the art in implementation of parallel and decentralized DNN systems, thereby benefiting all scientific fields of endeavor that rely on computing. The decentralized DNN system will offer new opportunities in power constrained mobile platforms for applications including surveillance and automotive. The research results will lead to new materials/courses for computer architecture and systems. The proposed infrastructure will also be used to guide undergraduate students' research activities. The software infrastructure will be maintained as an open source project, which can be found at https://github.com/parallel-ml. It will be updated periodically as new outcomes become available. The results will be published in conferences, journals and technical reports.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数量不断增加的物联网(IoT)设备会生成大量的原始数据,需要实时处理和分析。 由于进行计算昂贵的任务(例如计算机视觉和自然语言处理)通常是物联网设备的挑战,因此他们的大多数计算目前都被卸载到云服务器上。但是,这种卸载会导致隐私风险增加以及对网络连接性的依赖。为了解决这一挑战,该项目利用已经连接的物联网设备的分布式计算能力实时执行高计算功率应用程序。该项目由三个任务组成。首先是用于多个物联网设备的分布式机器学习(ML)系统的开发。 该项目将涉及研究如何与可靠的连接之间的节点之间进行交流,以及如何在运行时动态更改每个节点的作业,而没有开销。第二是开发最佳任务分配和调度算法。在这里,机器学习方法将用于生成针对每种分布式系统配置的最佳识别模型体系结构。第三是低分辨率深神经网络(DNN)系统的开发来利用低功率计算节点。这些DNN系统的开发将涉及确定多个低分辨率过滤器,这些过滤器最适合各种配置。拟议的技术工作将推动实施并行和分散的DNN系统实施最新技术,从而使所有依赖计算的EndeAvor的科学领域受益。分散的DNN系统将为包括监视和汽车在内的应用程序提供新的机会。研究结果将为计算机架构和系统提供新的材料/课程。拟议的基础设施还将用于指导本科生的研究活动。该软件基础架构将作为一个开源项目维护,可以在https://github.com/parallelal-ml上找到。 随着新结果的可用,它将定期更新。结果将在会议,期刊和技术报告中发表。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SmaQ: Smart Quantization for DNN Training by Exploiting Value Clustering
- DOI:10.1109/lca.2021.3108505
- 发表时间:2021-07
- 期刊:
- 影响因子:2.3
- 作者:Nima Shoghi;Andrei Bersatti;Moinuddin K. Qureshi;Hyesoon Kim
- 通讯作者:Nima Shoghi;Andrei Bersatti;Moinuddin K. Qureshi;Hyesoon Kim
Video analytics from edge to server: work-in-progress
从边缘到服务器的视频分析:正在进行中
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jiashen Cao, Ramyad Hadidi
- 通讯作者:Jiashen Cao, Ramyad Hadidi
Characterizing the Deployment of Deep Neural Networks on Commercial Edge Devices
- DOI:10.1109/iiswc47752.2019.9041955
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0
- 作者:Hadidi, Ramyad;Cao, Jiashen;Kim, Hyesoon
- 通讯作者:Kim, Hyesoon
Distributed Perception by Collaborative Robots
- DOI:10.1109/lra.2018.2856261
- 发表时间:2018-07
- 期刊:
- 影响因子:5.2
- 作者:Ramyad Hadidi;Jiashen Cao;M. Woodward;M. Ryoo;Hyesoon Kim
- 通讯作者:Ramyad Hadidi;Jiashen Cao;M. Woodward;M. Ryoo;Hyesoon Kim
FiGO: Fine-Grained Query Optimization in Video Analytics
- DOI:10.1145/3514221.3517857
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Jiashen Cao;Karan Sarkar;Ramyad Hadidi;Joy Arulraj;Hyesoon Kim
- 通讯作者:Jiashen Cao;Karan Sarkar;Ramyad Hadidi;Joy Arulraj;Hyesoon Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyesoon Kim其他文献
ASCELLA: Accelerating Sparse Computation by Enabling Stream Accesses to Memory
ASCELLA:通过启用对内存的流访问来加速稀疏计算
- DOI:
10.23919/date48585.2020.9116501 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bahar Asgari;Ramyad Hadidi;Hyesoon Kim - 通讯作者:
Hyesoon Kim
The AM-Bench: An Android Multimedia Benchmark Suite
AM-Bench:Android 多媒体基准测试套件
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Chayong Lee;Euna Kim;Hyesoon Kim - 通讯作者:
Hyesoon Kim
The 2019 Top Picks in Computer Architecture
2019 年计算机架构热门精选
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.6
- 作者:
Hyesoon Kim - 通讯作者:
Hyesoon Kim
CuPBoP: A Framework to Make CUDA Portable
CuPBoP:使 CUDA 可移植的框架
- DOI:
10.1145/3572848.3577504 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ruobing Han;Jun Chen;Bhanu Garg;Jeffrey S. Young;Jaewoong Sim;Hyesoon Kim - 通讯作者:
Hyesoon Kim
CuPBoP: CUDA for Parallelized and Broad-range Processors
CuPBoP:用于并行和广泛处理器的 CUDA
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ruobing Han;Jun Chen;Bhanu Garg;Jeffrey S. Young;Jaewoong Sim;Hyesoon Kim - 通讯作者:
Hyesoon Kim
Hyesoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyesoon Kim', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Elements:Open-source hardware and software evaluation system for UAV
要素:无人机开源软硬件评估系统
- 批准号:
2103951 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Student Travel Support for the 43rd International Symposium on Computer Architecture (ISCA)
第 43 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
1620317 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Cymric: A Flexible Processor-Near-Memory System Architecture
XPS:完整:CCA:Cymric:灵活的处理器近内存系统架构
- 批准号:
1533767 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR: Small: Memory System Optimizations to Enable Fast-Response Mobile Devices at Low Power
CSR:小:内存系统优化,以低功耗实现快速响应移动设备
- 批准号:
1526798 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: CPU and GPU Based Heterogeneous Architecture Design and Managements
职业:基于CPU和GPU的异构架构设计和管理
- 批准号:
1054830 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Qameleon: Hardware/software Co-operative Automated Tuning for Heterogeneous Architectures
Qameleon:异构架构的硬件/软件协同自动调优
- 批准号:
0903447 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321225 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314680 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant