CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems

CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法

基本信息

  • 批准号:
    1814041
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The project focuses on one of the most fundamental problems in the intersection of applied mathematics and computer science: solving systems of multiple linear equations in multiple variables. Such systems, also known as linear regression problems, have applications in various fields, from classical engineering to data science and machine learning. These applications yield systems with millions of equations and variables. The design of very efficient solver algorithms is thus a problem of paramount importance. Over the last twenty years there has been a tremendous focus and progress in the theory of algorithms for solving certain types of linear systems that are ubiquitous in applications, despite the fact that they are somewhat restricted (e.g. each equation has only two variables). Along with these algorithms, a wealth of new notions, techniques and tools has been acquired. The project will develop extensions of these techniques, targeting concrete applications in related fields. Towards this end, the project includes research problems that are appropriate for advanced undergraduate and graduate students with complementary interests and skills, ranging from applied to theoretical. Research will be disseminated through all standard channels, importantly including free software.The project will pursue three main directions: (i) Bring the recent progress from the theoretical to the practical realm. Linear system solvers are useful in a variety of contexts, implying a need for implementations in disparate computational environments, including basic consumer computers, graphical processing units, or big parallel and distributed systems. This necessitates the development of new theory and algorithms that are practice-friendly, i.e. designed with the practical performance end-goal in mind. (ii) The impact of linear system solvers in the downstream applications in Data Science and Machine Learning can be accelerated and strengthened by pursuing their tighter integration with the target applications. A second major goal of the project is thus to pursue an exportation of techniques and notions from the theory of linear regression to specific problems in Machine Learning. This will require the development of adaptations and enhancements of these techniques. (iii) The study of specific algorithmic applications in Machine Learning also serves the third major goal of the project: the design of solvers for regression problems that go beyond the restricted types for which efficient solvers are currently known.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目重点关注应用数学和计算机科学交叉领域最基本的问题之一:求解多变量中的多个线性方程组。此类系统也称为线性回归问题,在从经典工程到数据科学和机器学习的各个领域都有应用。这些应用程序产生具有数百万个方程和变量的系统。因此,非常有效的求解器算法的设计是一个至关重要的问题。在过去的二十年里,用于求解应用中普遍存在的某些类型的线性系统的算法理论得到了巨大的关注和进步,尽管它们受到一定的限制(例如每个方程只有两个变量)。除了这些算法之外,还获得了大量的新概念、技术和工具。该项目将开发这些技术的扩展,针对相关领域的具体应用。为此,该项目包括适合具有互补兴趣和技能的高年级本科生和研究生的研究问题,从应用到理论。研究将通过所有标准渠道传播,重要的是包括免费软件。该项目将追求三个主要方向:(i)将最新进展从理论带到实践领域。线性系统求解器在各种环境中都很有用,这意味着需要在不同的计算环境中实现,包括基本的消费计算机、图形处理单元或大型并行和分布式系统。这就需要开发易于实践的新理论和算法,即在设计时考虑到实际性能的最终目标。 (ii) 通过追求与目标应用程序更紧密的集成,可以加速和加强线性系统求解器对数据科学和机器学习下游应用程序的影响。因此,该项目的第二个主要目标是寻求将线性回归理论的技术和概念输出到机器学习中的特定问题。这将需要开发这些技术的适应和增强。 (iii) 对机器学习中特定算法应用的研究也服务于该项目的第三个主要目标:设计回归问题的求解器,这些问题超出了目前已知的高效求解器的限制类型。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low‐rank updates of matrix square roots
矩阵平方根的低阶更新
Randomized Iterative Algorithms for Fisher Discriminant Analysis
  • DOI:
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agniva Chowdhury;Jiasen Yang;P. Drineas
  • 通讯作者:
    Agniva Chowdhury;Jiasen Yang;P. Drineas
Sublinear Time Eigenvalue Approximation via Random Sampling
  • DOI:
    10.4230/lipics.icalp.2023.21
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajarshi Bhattacharjee;Cameron Musco;Archan Ray
  • 通讯作者:
    Rajarshi Bhattacharjee;Cameron Musco;Archan Ray
On the Convergence of Inexact Predictor-Corrector Methods for Linear Programming
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory Dexter;Agniva Chowdhury;H. Avron;P. Drineas
  • 通讯作者:
    Gregory Dexter;Agniva Chowdhury;H. Avron;P. Drineas
Speeding up Linear Programming using Randomized Linear Algebra
使用随机线性代数加速线性规划
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petros Drineas其他文献

Petros Drineas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petros Drineas', 18)}}的其他基金

NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
  • 批准号:
    2209509
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
  • 批准号:
    1760353
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
III: Small: Novel Statistical Data Analysis Approaches for Mining Human Genetics Datasets
III:小型:挖掘人类遗传学数据集的新颖统计数据分析方法
  • 批准号:
    1715202
  • 财政年份:
    2017
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1661760
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
  • 批准号:
    1661756
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447283
  • 财政年份:
    2014
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
  • 批准号:
    1319280
  • 财政年份:
    2013
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Algorithms in Linear Algebra and Numerical Evaluations on Massive Datasets
合作研究:线性代数中的随机算法和海量数据集的数值评估
  • 批准号:
    1008983
  • 财政年份:
    2010
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
AF: Small: Fast and Efficient Randomized Algorithms for Solving Laplacian Systems of Linear Equations and Sparse Least Squares Problems
AF:小型:用于解决线性方程拉普拉斯系统和稀疏最小二乘问题的快速高效随机算法
  • 批准号:
    1016501
  • 财政年份:
    2010
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
  • 批准号:
    1814629
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
  • 批准号:
    1813160
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1813374
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning
CCF-BSF:AF:小:凸和非凸分布式学习
  • 批准号:
    1718970
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
CCF-BSF: AF:Small: Time-Message Tradeoffs in Distributed Algorithms
CCF-BSF:AF:小:分布式算法中的时间消息权衡
  • 批准号:
    1717075
  • 财政年份:
    2017
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了