CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning

CCF-BSF:AF:小:凸和非凸分布式学习

基本信息

  • 批准号:
    1718970
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Machine learning is an increasingly important approach in tackling many difficult scientific, engineering and artificial intelligence tasks, ranging from machine translation and speech recognition, through control of self driving cars, to protein structure prediction and drug design.  The core idea of machine learning is to use examples and data to automatically train a system to perform some task.  Accordingly, the success of machine learning is tied to availability of large amounts of training data and our ability to process it.  Much of the recent success of machine learning is fueled by the large amounts of data (text, images, videos, etc) that can now be collected. But all this data also needs to be processed and learned from---indeed this data flood has shifted the bottleneck, to a large extent, from availability of data to our ability to process it. In particular, the amounts of data involved can no longer be stored and handled on single computers.  Consequently, distributed machine learning, where data is processed and learned from on many computers that communicate with each other, is a crucial element of modern large scale machine learning.The goal of this project is to provide a rigorous framework for studying distributed machine learning, and through it develop efficient methods for distributed learning and a theoretical understanding of the benefits of these methods, as well as the inherent limitations of distributed learning.  A central component in the PIs' approach is to model distributed learning as a stochastic optimization problem, where different machines receive samples drawn from the same source distribution, thus allowing methods and analysis that specifically leverage the relatedness between data on different machines.  This is crucial for studying how availability of multiple computers can aid in reducing the computational cost of learning. Furthermore, the project also encompasses the more challenging case where there are significant differences between the nature of the data on different machines (for instance, when different machines serve different geographical regions, or when each machine is a personal device, collecting data from a single user).  In such a situation, the proposed approach to be studied is to integrate distributed learning with personalization or adaptation, which the PIs argue can not only improve learning performance, but also better leverage distributed computation.This is an international collaboration, made possible through joint funding with the US-Israel Binational Science Foundation (BSF). The project brings together two PIs that have worked together extensively on related topics in machine learning and optimization.
机器学习是一种越来越重要的方法,可以解决许多困难的科学,工程和人工智能任务,从机器翻译和语音识别到控制自动驾驶汽车到蛋白质结构的预测和药物设计等等。机器学习的核心思想是使用示例和数据自动训练系统以执行某些任务。根据机器学习的成功,与大量培训数据的可用性及其处理能力有关。现在,机器学习的最新成功都取决于现在可以收集的大量数据(文本,图像,视频等)。但是所有这些数据还需要从处理和学习 - 确实,这些数据洪水在很大程度上使瓶颈从数据的可用性转移到了我们处理数据的能力。特别是,所涉及的数据量不再可以存储和处理在单个计算机上。因此,分布式机器学习是在许多相互通信的计算机上处​​理和了解的数据,是现代大型机器学习的关键要素。该项目的目的是为研究分布式机器学习提供严格的框架,并通过其开发有效的方法来开发分布式学习的有效方法,并对分布式学习的益处以及分布式学习的效果以及分发性的限制。 PIS方法中的一个核心组成部分是将分布式学习作为随机优化问题建模,其中不同的机器接收从相同的源分布中绘制的样品,从而允许使用方法和分析,以专门利用不同机器上数据之间的相关性。这对于研究多台计算机的可用性如何有助于降低学习的计算成本至关重要。此外,该项目还包括更多的挑战案例,即不同机器上数据的性质之间存在显着差异(例如,当不同的机器服务于不同的地理区域时,或者每台机器是个人设备时,从单个用户那里收集数据)。在这种情况下,提议的研究方法是将分布式学习与个性化或适应性整合在一起,PIS认为这不仅可以提高学习绩效,而且可以更好地杠杆分布式计算。这是一项国际合作,通过与美国 - 以色列双性科学基金会(BSF)通过共同资助而成为可能。该项目汇集了两个PI,这些PI在机器学习和优化中广泛合作。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minibatch vs Local SGD for Heterogeneous Distributed Learning
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake E. Woodworth;Kumar Kshitij Patel;N. Srebro
  • 通讯作者:
    Blake E. Woodworth;Kumar Kshitij Patel;N. Srebro
The Everlasting Database: Statistical Validity at a Fair Price
  • DOI:
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake E. Woodworth;V. Feldman;Saharon Rosset;N. Srebro
  • 通讯作者:
    Blake E. Woodworth;V. Feldman;Saharon Rosset;N. Srebro
A Stochastic Newton Algorithm for Distributed Convex Optimization
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Bullins;Kumar Kshitij Patel;Ohad Shamir;N. Srebro;Blake E. Woodworth
  • 通讯作者:
    Brian Bullins;Kumar Kshitij Patel;Ohad Shamir;N. Srebro;Blake E. Woodworth
Lower bounds for non-convex stochastic optimization
  • DOI:
    10.1007/s10107-022-01822-7
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yossi Arjevani;Y. Carmon;John C. Duchi;Dylan J. Foster;N. Srebro;Blake E. Woodworth
  • 通讯作者:
    Yossi Arjevani;Y. Carmon;John C. Duchi;Dylan J. Foster;N. Srebro;Blake E. Woodworth
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
  • DOI:
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dylan J. Foster;Ayush Sekhari;Ohad Shamir;N. Srebro;Karthik Sridharan;Blake E. Woodworth
  • 通讯作者:
    Dylan J. Foster;Ayush Sekhari;Ohad Shamir;N. Srebro;Karthik Sridharan;Blake E. Woodworth
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Srebro其他文献

Score Design for Multi-Criteria Incentivization
多标准激励的评分设计
Fixed-structure H∞ controller design based on Distributed Probabilistic Model-Building Genetic Algorithm
基于分布式概率建模遗传算法的固定结构H∞控制器设计
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
关于通过统计和梯度查询学习稀疏函数的复杂性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirmit Joshi;Theodor Misiakiewicz;Nathan Srebro
  • 通讯作者:
    Nathan Srebro

Nathan Srebro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Srebro', 18)}}的其他基金

HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934843
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
  • 批准号:
    1764032
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1546500
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: AF: Medium: Learning and Matrix Reconstruction with the Max-Norm and Related Factorization Norms
RI:AF:中:使用最大范数和相关因式分解范数进行学习和矩阵重建
  • 批准号:
    1302662
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1814041
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
  • 批准号:
    1814629
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
  • 批准号:
    1813160
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1813374
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CCF-BSF: AF:Small: Time-Message Tradeoffs in Distributed Algorithms
CCF-BSF:AF:小:分布式算法中的时间消息权衡
  • 批准号:
    1717075
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了