AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks

AF:RI:中:协作研究:理解和改进深度和循环网络的优化

基本信息

  • 批准号:
    1764032
  • 负责人:
  • 金额:
    $ 54.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning using deep neural networks has recently demonstrated broad empirical success. Despite this success, the optimization procedures that fit deep neural networks to data are still poorly understood. Besides playing a crucial role in fitting deep neural networks to data, optimization also strongly affects the model's ability to generalize from training examples to unseen data. This project will establish a working theory for why and when large artificial neural networks train and generalize well, and use this theory to develop new optimization methods. The utility of the new methods will be demonstrated in applications involving language, speech, biological sequences and other sequence data. The project will involve training of graduate and undergraduate students, and the project leaders will offer tutorials aimed at both the machine learning community, and other researchers and engineers using machine learning tools. In order to establish a theory of why and when non-convex optimization works well when training deep networks, both empirical top-down and analytic bottom-up approaches will be pursued. The top-down approach will involve phenomenological analysis of large scale deep models used in practice, both when presented with real data, and when presented with data specifically crafted to test the behavior of the network. The bottom-up approach will involve precise analytic investigation from increasingly more complex models, starting with linear models, and non-convex matrix factorization, progressing through linear neural networks, models with a small number of hidden layers, and eventually reaching deeper and more complex networks. The theory developed aims to be both explanatory and actionable, and will be used to derive new optimization methods and modifications to architectures that aid in optimization and generalization. A particularly important testbed is the case of recurrent neural networks. Recurrent neural networks are powerful sequence models that maintain state as they process an input sequence and are used for sequence data. Particularly challenging to optimize, recurrent neural networks still leave much room for a stronger principled understanding, which the project aims to provide.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用深度神经网络的机器学习最近取得了广泛的经验成功。尽管取得了如此成功,但将深度神经网络与数据相匹配的优化过程仍然知之甚少。除了在深度神经网络与数据的拟合方面发挥着至关重要的作用之外,优化还强烈影响模型从训练样本泛化到未见过的数据的能力。该项目将建立一个工作理论,解释大型人工神经网络为何以及何时能够良好地训练和泛化,并利用该理论开发新的优化方法。新方法的实用性将在涉及语言、语音、生物序列和其他序列数据的应用中得到证明。该项目将涉及对研究生和本科生的培训,项目负责人将为机器学习社区以及使用机器学习工具的其他研究人员和工程师提供教程。为了建立关于非凸优化在训练深度网络时为何以及何时发挥良好作用的理论,将采用经验自上而下和分析自下而上的方法。自上而下的方法将涉及对实践中使用的大规模深度模型的现象学分析,无论是在提供真实数据时,还是在提供专门为测试网络行为而设计的数据时。自下而上的方法将涉及对日益复杂的模型进行精确的分析研究,从线性模型和非凸矩阵分解开始,通过线性神经网络、具有少量隐藏层的模型,最终达到更深、更复杂的目标网络。所开发的理论旨在具有解释性和可操作性,并将用于推导新的优化方法和对有助于优化和泛化的架构的修改。一个特别重要的测试平台是循环神经网络。循环神经网络是强大的序列模型,在处理输入序列并用于序列数据时保持状态。循环神经网络的优化尤其具有挑战性,但仍然为该项目旨在提供的更强有力的原则性理解留下了很大的空间。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing Implicit Bias in Terms of Optimization Geometry
  • DOI:
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suriya Gunasekar;Jason D. Lee;Daniel Soudry;N. Srebro
  • 通讯作者:
    Suriya Gunasekar;Jason D. Lee;Daniel Soudry;N. Srebro
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shahar Azulay;E. Moroshko;M. S. Nacson;Blake E. Woodworth;N. Srebro;A. Globerson;Daniel Soudry
  • 通讯作者:
    Shahar Azulay;E. Moroshko;M. S. Nacson;Blake E. Woodworth;N. Srebro;A. Globerson;Daniel Soudry
Pessimism for Offline Linear Contextual Bandits using Confidence Sets
使用置信集对离线线性上下文强盗的悲观态度
Convergence of Gradient Descent on Separable Data
  • DOI:
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. S. Nacson;J. Lee;Suriya Gunasekar;N. Srebro;Daniel Soudry
  • 通讯作者:
    M. S. Nacson;J. Lee;Suriya Gunasekar;N. Srebro;Daniel Soudry
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eran Malach;Pritish Kamath;E. Abbe;N. Srebro
  • 通讯作者:
    Eran Malach;Pritish Kamath;E. Abbe;N. Srebro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Srebro其他文献

Score Design for Multi-Criteria Incentivization
多标准激励的评分设计
Fixed-structure H∞ controller design based on Distributed Probabilistic Model-Building Genetic Algorithm
基于分布式概率建模遗传算法的固定结构H∞控制器设计
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
关于通过统计和梯度查询学习稀疏函数的复杂性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirmit Joshi;Theodor Misiakiewicz;Nathan Srebro
  • 通讯作者:
    Nathan Srebro

Nathan Srebro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Srebro', 18)}}的其他基金

HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934843
  • 财政年份:
    2019
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Continuing Grant
CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning
CCF-BSF:AF:小:凸和非凸分布式学习
  • 批准号:
    1718970
  • 财政年份:
    2018
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Stochastic Approximation for Subspace and Multiview Representation Learning
BIGDATA:协作研究:F:子空间和多视图表示学习的随机逼近
  • 批准号:
    1546500
  • 财政年份:
    2015
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
RI: AF: Medium: Learning and Matrix Reconstruction with the Max-Norm and Related Factorization Norms
RI:AF:中:使用最大范数和相关因式分解范数进行学习和矩阵重建
  • 批准号:
    1302662
  • 财政年份:
    2013
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRGPRX2激活“皮肤-神经轴”在非FcεRI介导慢性自发性荨麻疹中的作用及分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research:RI:AF:Medium:Exchanging Knowledge Beyond Data Between Human and Machine Learner
协作研究:RI:AF:Medium:在人类和机器学习者之间交换数据之外的知识
  • 批准号:
    1956339
  • 财政年份:
    2020
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: AF: Medium: Exchanging Knowledge Beyond Data Between Human and Machine Learner
协作研究:RI:AF:媒介:在人类和机器学习者之间交换数据之外的知识
  • 批准号:
    1956441
  • 财政年份:
    2020
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
  • 批准号:
    1763562
  • 财政年份:
    2018
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
AF: RI: Medium: Collaborative Research: Understanding and Improving Optimization in Deep and Recurrent Networks
AF:RI:中:协作研究:理解和改进深度和循环网络的优化
  • 批准号:
    1764033
  • 财政年份:
    2018
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
RI: AF: Medium: Learning and Matrix Reconstruction with the Max-Norm and Related Factorization Norms
RI:AF:中:使用最大范数和相关因式分解范数进行学习和矩阵重建
  • 批准号:
    1302662
  • 财政年份:
    2013
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了