Data-Driven Operation and Control of Active Power Distribution Systems with High Penetration of Distributed Energy Resources and Energy Storage
分布式能源与储能高渗透主动配电系统的数据驱动运行与控制
基本信息
- 批准号:1810174
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The expansion of large scale temporally changing and spatially separated distributed energy resources (DERs), storage devices and, flexible loads exhibit inherent computational challenges for management of active power distribution systems. Also, time-scale of operation of these devices and configuration requirements such as micro grid formation, involves integrating dynamic system models within the optimization framework. Considering these challenges, this project aims to develop novel algorithms for optimal power flow in power distribution systems, distributed modeling of subnetworks in power distribution system with large number of active devices, and a secondary control framework that can ensure seamless integration with vendor driven controllers. Real-life data and models from the local utility will be utilized to demonstrate feasibility of the methodology. Educational and outreach activities of this project include a) engaging students in problem-based learning from diverse undergraduate and graduate groups including under-represented and minority students, b) designing advanced curriculum on power system control with convex optimization and distributed control approaches, c) providing a platform to motivate and attract students in engineering especially the underrepresented minorities and women, and d) developing a comprehensive dissemination platform through PIs research lab and the center at University of North Carolina at Charlotte.The project will investigate: a) a novel Receding Horizon Control (RHC) based mixed-integer second order cone programming (MISOCP) model for optimal power flow in power distribution systems that can scale up to integrate thousands of aggregated nodes and provide set points (integer or real) for passive and active devices considering unbalanced distribution system operation, b) a stochastic model predictive consensus framework for distributed modeling of subnetworks in power distribution system with large number of active devices, c) a secondary control framework that provides improved active/reactive power control and can ensure seamless integration with vendor driven controllers in turn enhancing power quality and stability, and d) an implementation platform including communication loops with real-life data and models from the local utility that proves feasibility of the methodology. The proposed optimization framework can provide global solutions for decision control variables and set points, including switches and transformer taps, at all active nodes in power distribution system. Also, the methodology can incorporate stochastic or deterministic changes in the devices such as DERs and energy storage, considering each subnetwork. Moreover, the architecture can be seamlessly integrated with the existing vender driven controllers thus capable of accommodating high in-feed of distributed resources and providing a low-cost solution to exponential increase in decision and grid state variables.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模在时间变化和空间分离的分布式能源(DER),存储设备和灵活负载的扩展表现出对主动配电系统管理的固有计算挑战。同样,这些设备的操作和配置要求(例如微电网形成)的时间尺度涉及将动态系统模型集成到优化框架内。考虑到这些挑战,该项目旨在开发新的算法,以在功率分配系统中的最佳功率流,具有大量有源设备的功率分配系统中的子网模型以及一个辅助控制框架,以确保与供应商驱动的控制器无缝集成。 现实生活中的数据和本地公用事业的模型将用于证明该方法的可行性。 Educational and outreach activities of this project include a) engaging students in problem-based learning from diverse undergraduate and graduate groups including under-represented and minority students, b) designing advanced curriculum on power system control with convex optimization and distributed control approaches, c) providing a platform to motivate and attract students in engineering especially the underrepresented minorities and women, and d) developing a comprehensive dissemination platform through PIs research lab and the center at University该项目将调查北卡罗来纳州。使用大量有源设备的功率分配系统中的子网建模,c)一个二级控制框架,可提供改进的主动/反应性功率控制,并可以确保与供应商驱动的控制器的无缝集成,从而增强功率质量和稳定性,d)实现平台,包括与当地实用程序的通信数据,以证明该方法的真实数据和模型。所提出的优化框架可以在功率分配系统中的所有活动节点上为决策控制变量和设定点提供全局解决方案。此外,考虑每个子网,该方法可以在设备(例如DER和能量存储)等设备中结合随机或确定性变化。此外,该体系结构可以与现有的Vendend驱动的控制器无缝集成,因此能够适应分布式资源的高供应,并为决策和网格状态变量提供低成本的解决方案。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的criteria criteria crietia crietia crietia criteria criperia crietia crietia crietia crietia criteria crietia crietia criteria criperia criteria均值得一堂。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Coordinated Control Architecture With Inverter-Based Resources and Legacy Controllers of Power Distribution System for Voltage Profile Balance
具有基于逆变器的资源和配电系统传统控制器的协调控制架构以实现电压分布平衡
- DOI:10.1109/tia.2022.3183030
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Suresh, Arun;Bisht, Robin;Kamalasadan, Sukumar
- 通讯作者:Kamalasadan, Sukumar
Decentralized Distributed Convex Optimal Power Flow Model for Power Distribution System Based on Alternating Direction Method of Multipliers
- DOI:10.1109/tia.2022.3217023
- 发表时间:2023-01
- 期刊:
- 影响因子:4.4
- 作者:B. Biswas;Md Shamim Hasan;S. Kamalasadan
- 通讯作者:B. Biswas;Md Shamim Hasan;S. Kamalasadan
Distributed Convex Optimal Power Flow Model Based on Alternating Direction Method of Multipliers For Power Distribution System
配电系统基于乘法器交替方向法的分布式凸最优潮流模型
- DOI:10.1109/ias48185.2021.9677276
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Biswas, Biswajit Dipan;Kamalasadan, Sukumar
- 通讯作者:Kamalasadan, Sukumar
Oscillation Damping of Integrated Transmission and Distribution Power Grid With Renewables Based on Novel Measurement-Based Optimal Controller
基于新型测量的最优控制器的可再生能源输配电综合电网振荡阻尼
- DOI:10.1109/tia.2022.3162565
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Ogundairo, Olalekan;Kamalasadan, Sukumar;Nair, Anuprabha R.;Smith, Michael
- 通讯作者:Smith, Michael
A Two-Stage Combined UC-OPF Model Using Mixed Integer and Semi-Definite Programming
使用混合整数和半定规划的两阶段组合 UC-OPF 模型
- DOI:10.1109/isgt49243.2021.9372168
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dipan Biswas, Biswajit;Kamalasadan, Sukumar;Paudyal, Sumit
- 通讯作者:Paudyal, Sumit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sukumar Kamalasadan其他文献
Sukumar Kamalasadan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sukumar Kamalasadan', 18)}}的其他基金
I-Corps: Energy conservation network software that simultaneously audits, monitors, and manages energy use in buildings in real-time
I-Corps:节能网络软件,可同时实时审核、监控和管理建筑物的能源使用情况
- 批准号:
2227513 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
AIS: Collaborative Research: A Novel Intelligent Grid Optimization Architecture Using Hierarchical Multi-Agent Framework for Modern Sustainable Power Grid
AIS:协作研究:利用分层多代理框架实现现代可持续电网的新型智能电网优化架构
- 批准号:
1309911 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: A new generation of scalable intelligent supervisory loop based algorithm for complex system control and optimization
职业:新一代可扩展智能监控环路算法,用于复杂系统控制和优化
- 批准号:
1063484 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CAREER: A new generation of scalable intelligent supervisory loop based algorithm for complex system control and optimization
职业:新一代可扩展智能监控环路算法,用于复杂系统控制和优化
- 批准号:
0748238 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
数据驱动的智能化微创手术质量控制方法研究
- 批准号:72201085
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数据驱动的智能化微创手术质量控制方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据与知识联合驱动的手术机器人多源目标协同识别
- 批准号:U22B2050
- 批准年份:2022
- 资助金额:259.00 万元
- 项目类别:联合基金项目
多模态数据驱动下的日间手术准入决策研究
- 批准号:72104161
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
多模态数据驱动下的日间手术准入决策研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
- 批准号:
10816654 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Hats & Ladders for Health: Data-driven Decision-Making for Future Health Citizens and Professionals
帽子
- 批准号:
10696572 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Implementation of a data-driven pre-hospital lay first responder program in Cameroon
在喀麦隆实施数据驱动的院前急救人员计划
- 批准号:
10805783 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别: