A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes

数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架

基本信息

项目摘要

Project Summary/Abstract Autism Spectrum Disorder (ASD) can be viewed through three complementary lenses: neurologically, it is linked to distributed changes in brain structure, function, and connectivity; biologically, it is associated with genome-wide mutations across multiple pathways; and clinically, it manifests as a diverse spectrum of behavioral and cogni- tive impairments. Despite this richness, treatment options for ASD are based on coarse diagnostics and target a few specific symptoms, such as social awareness, irritability, and depression. As a result, they have varied, and often limited, efficacy across patients. Taken together, next-generation therapeutics for ASD will crucially depend on our ability to bridge its neurological, biological, and clinical viewpoints for personalized intervention. Imaging-genetics is an emerging field that attempts to link neuroimaging features with genetic variants. How- ever, most methods focus on a restricted set of biomarkers, and they do not account for clinical phenotype, both of which provide an incomplete picture of the impacted processes. Our long-term goal is to develop a modu- lar platform that fuses multimodal neuroimaging and multi-omics data to unravel the complex etiology of ASD. The overall objective of this proposal is to develop and validate interpretable deep learning models to combine genome-wide variants with whole-brain structural and functional MRI data. Our innovative strategy is to use biologically-informed neural network architectures to project each of the modalities to a shared latent space that is simultaneously predictive of patient-level clinical phenotype. This unique formulation can easily accommodate missing data modalities, thus maximally utilizing all of the available information. We will devise, implement, vali- date, and disseminate our model via four specific aims. In Aim 1 we will develop a graph neural network, whose connections mimic a well-known gene ontology. Hierarchical pooling operations will capture the information flow through the network, while an attention layer will learn the discriminative biological pathways associated with the phenotype. In Aim 2 we will develop and integrate a Bayesian feature selection procedure to identify ROI-based neuroimaging biomarkers and a matrix autoencoder to extract discriminative functional subnetworks from brain connectivity data. In Aim 3 we will use the fused imaging and genetic architectures to uncover the neural and biological bases underlying the observed clinical heterogeneity of ASD. Finally, in Aim 4 we will package and dis- seminate our model as a user-friendly tool for the broader research community. We anticipate the proposed work will have a transformative impact on ASD research by allowing us to develop refined diagnostic instruments and on the field of imaging-genetics by providing a new approach for multimodal biomarker discovery.
项目摘要/摘要 自闭症谱系障碍(ASD)可以通过三个完整的镜头观看:神经学上,它是链接的 大脑结构,功能和连通性的分布变化;在生物学上,它与全基因组有关 跨多个途径的突变;在临床上,它表现为行为和认知的不同范围 损害。尽管如此,ASD的治疗选择仍基于粗糙的诊断和目标 一些特定的符号,例如社会意识,易怒和沮丧。结果,它们变化了, 并且通常有限,患者的效率。两者合计,对ASD的下一代疗法将至关重要 取决于我们桥接其神经,生物学和临床观点以进行个性化干预的能力。 成像遗传学是一种新兴领域,试图将神经影像特征与遗传变异联系起来。如何- 有史以来,大多数方法都集中在一组受限制的生物标志物上,并且它们不考虑临床表型,两者都 其中提供了不完整的影响过程。我们的长期目标是开发一个模型 融合多模式神经影像学和多媒体数据的LAR平台以揭示ASD的复杂病因。 该建议的总体目的是开发和验证可解释的深度学习模型以结合 具有全脑结构和功能性MRI数据的全基因组变体。我们的创新策略是使用 生物知识的神经网络体系结构将每种模式都投射到共享的潜在空间 仅预测患者级临床表型。这个独特的公式可以轻松容纳 缺少数据模式,因此最大程度地利用了所有可用信息。我们将设计,实施,vali- 日期,并通过四个特定目标传播我们的模型。在AIM 1中,我们将开发一个图形神经网络,谁 连接模仿众所周知的基因本体。分层池操作将捕获信息流 通过网络,注意力层将学习与 表型。在AIM 2中,我们将开发和集成一个贝叶斯特征选择程序,以识别基于ROI的基于ROI 神经成像生物标志物和矩阵自动编码器从脑中提取歧视功能子网 连接数据。在AIM 3中,我们将使用融合的成像和遗传体系结构来揭示神经和 观察到的ASD临床异质性的基础生物基础。最后,在AIM 4中,我们将包装并脱颖而出 我们的模型将我们的模型作为更广泛的研究社区的用户友好工具。我们期待拟议的工作 通过允许我们开发重定的诊断工具,将对ASD研究产生变革性的影响 并通过为多模式生物标志物发现的新方法提供成像基因的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Archana Venkatara...的其他基金

Automated Presurgical Language Mapping via Deep Learning for Multimodal Brain Connectivity
通过深度学习进行自动术前语言映射以实现多模式大脑连接
  • 批准号:
    10286181
    10286181
  • 财政年份:
    2021
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别:
Neuronal mechanisms of model-based learning
基于模型的学习的神经机制
  • 批准号:
    10722261
    10722261
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别:
miR-137 Regulation of Intrinsic Excitability
miR-137 内在兴奋性的调节
  • 批准号:
    10719579
    10719579
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
    $ 46.95万
  • 项目类别: