Plasmon Coupling Correlation Spectroscopy
等离子耦合相关光谱
基本信息
- 批准号:1808241
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement and Imaging Program in the Division of Chemistry and the Biomaterials Program in the Division of Materials Research, Professor Reinhard and his team at Boston University are developing optical spectroscopic techniques to investigate the structure and movement of biomolecules at the single molecule level. Single molecule measurements provide information about each molecules that move at a fast rate or rare events that would otherwise be buried by bulk measurements. To monitor the movement and structural changes of biomolecules at such a small scale, Professor Reinhard makes a molecular ruler based on optical interaction of gold nanoparticles (NPs). Fast and subtle changes in biomolecular structure and movements lead to changes in the spectral signature of these gold NPs, which can be captured at fast speed and be used to understand the behavior of biomolecules. The developed technique could elucidate the role of structural fluctuations of proteins and other biomolecules in complex biological systems, which could lead to new advances in biological, biomedical, and environmental research. Professor Reinhard works with his graduate and undergraduate students on the project, providing them an opportunity to work at the interface between biophysical chemistry, bioplasmonics, and biomaterials. Professor Reinhard also organizes workshops, offers research internships, and develops web-modules to share with the general public of his research outcomes. A particular emphasis of his outreach activities is to attract members of groups that are underrepresented in science and engineering to the research of this project.Professor Reinhard is developing a localized surface plasmon resonance (LSPR) based correlation spectroscopy. He utilizes distance-dependent near-field coupling between plasmonic NPs that cause spectral fluctuations in the far-field to monitor interparticle separations which would allow him to obtain long-time signal correlation studies of individual biopolymer molecules entirely without blinking artefacts. In this project, Professor Reinhard uses plasmon coupling correlation spectroscopy (PCCS) to measure the effect of nanoconfinement on the mechanical properties of DNA and experimentally test the validity of conventional polymer models under nano-confinement. He also works on understanding the structural dynamics of intrinsically disordered proteins (IDPs) by providing an accurate characterization of the structural fluctuations over a broad frequency range in order to develop predictive function models based on structural dynamics. The ability to elucidate the role of structural fluctuations for the function of disordered proteins and other biopolymers is important and necessary to develop a fundamental understanding of their working mechanism, which remains enigmatic. The project involves testing how spatial nanoconfinement, which is ubiquitous in biological systems, effects and potentially changes the structural dynamics of biopolymers. Besides the research goals, Professor Reinhard is working on a series of educational and outreach activities to actively mentoring students in interdisciplinary research and encourage the participation of underrepresented groups in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学测量和成像计划的化学和成像计划的支持下,材料研究部的生物材料计划,莱因哈德教授及其团队波士顿大学正在开发光谱技术,以研究单分子水平生物分子的结构和运动。单分子测量提供了有关以快速速率或罕见事件移动的每个分子的信息,否则这些分子将被大量测量掩埋。 为了监测如此小的生物分子的运动和结构变化,莱因哈德教授根据金纳米颗粒(NPS)的光学相互作用制作了分子尺。生物分子结构和运动的快速变化会导致这些金NP的光谱特征的变化,这些金NP可以以快速捕获,并用于了解生物分子的行为。开发的技术可以阐明蛋白质和其他生物分子在复杂的生物系统中的结构波动的作用,这可能导致生物,生物医学和环境研究的新进展。 Reinhard教授与他的毕业生和本科生一起在该项目中工作,为他们提供了在生物物理化学,生物现代的和生物材料之间的界面工作的机会。莱因哈德(Reinhard)教授还组织研讨会,提供研究实习,并开发网络模型,以与他的研究成果的公众分享。他的外展活动的一种特别强调是吸引科学和工程学中代表不足的群体的成员。他利用等离子体NP之间的距离依赖性近场耦合,这些NP在远场引起光谱波动来监测颗粒间的分离,这将使他能够完全对单个生物聚合物分子的长期信号相关研究完全闪烁而不会闪烁的人工图形。在该项目中,Reinhard教授使用等离子体耦合相关光谱(PCC)来测量纳米构封解对DNA机械性能的影响,并在纳米芬。内进行实验测试常规聚合物模型的有效性。他还致力于通过在广泛的频率范围内提供了对结构波动的准确表征,以便基于结构动力学开发预测功能模型,从而理解本质上无序蛋白(IDP)的结构动力学。阐明结构波动在无序蛋白质和其他生物聚合物功能方面的作用的能力对于发展其工作机制的基本理解至关重要,这仍然是阴险的。该项目涉及测试如何在生物系统,效果并有可能改变生物聚合物的结构动力学中无处不在的空间纳米结构。除研究目标外,赖因哈德教授还在开展一系列教育和推广活动,以积极指导学生进行跨学科研究,并鼓励人数不足的科学和工程团体的参与。这项奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的优点和广泛的影响来评估NSF的法定任务,并被认为是值得的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers
- DOI:10.1021/acsphotonics.9b00388
- 发表时间:2019-07
- 期刊:
- 影响因子:7
- 作者:Xin Zhao;Bjoern M. Reinhard
- 通讯作者:Xin Zhao;Bjoern M. Reinhard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjoern Reinhard其他文献
Bjoern Reinhard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjoern Reinhard', 18)}}的其他基金
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
- 批准号:
2344525 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAS-MNP: Elucidating Nanoplastics - Cell Interactions that Enhance Polycyclic Aromatic Hydrocarbon Uptake in an Intestinal Membrane Model
CAS-MNP:阐明纳米塑料 - 增强肠膜模型中多环芳烃吸收的细胞相互作用
- 批准号:
2032376 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Elucidating Multiparametric Nanoparticle - Intestinal Membrane Interactions in an In Vitro Model System
阐明体外模型系统中的多参数纳米颗粒-肠膜相互作用
- 批准号:
1822246 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation
OP:用于对映体分离的手性力的等离子体增强
- 批准号:
1609778 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Multiparametric Optical Microbe Sensing with Engineered Photonic-Plasmonic Nanostructures
利用工程光子等离子体纳米结构进行多参数光学微生物传感
- 批准号:
1159552 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Frequency Domain Plasmon Fluctuation Spectroscopy For Single Biopolymer Mechanical Sensing
职业:用于单一生物聚合物机械传感的频域等离子体激元波动光谱
- 批准号:
0953121 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Rationally Designed Plasmonic Nanostructures for Rapid Bacteria Detection and Identification
合理设计的等离子体纳米结构用于快速细菌检测和识别
- 批准号:
0853798 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
考虑参数不确定性和相关性的结构-声场耦合系统设计方法研究
- 批准号:52375093
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多场耦合下铜/锡电磁脉冲微焊点组织演化及其与性能的相关性
- 批准号:52175288
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
高压自起动永磁同步电机多谐波磁场耦合与电磁振动相关性研究
- 批准号:52177063
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
多场耦合下铜/锡电磁脉冲微焊点组织演化及其与性能的相关性
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
碲锌镉晶体中位错与多维缺陷的耦合机制及其外延相关性的研究
- 批准号:62004202
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Neurophotonic Advances for Mechanistic Investigation of the Role of Capillary Dysfunction in Stroke Recovery
毛细血管功能障碍在中风恢复中作用机制研究的神经光子学进展
- 批准号:
10710209 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Delayed white matter loss in concussive head injuries and its treatment
颅脑震荡迟发性脑白质丢失及其治疗
- 批准号:
10532800 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Topological spin textures in frustrated magnets and their coupling to conduction electrons
受挫磁体中的拓扑自旋纹理及其与传导电子的耦合
- 批准号:
21K13877 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Strong correlation and strong coupling effects in the excitonic phase and its vicinity region based on the first-principles calculations and the quantum many-body calculations
基于第一性原理计算和量子多体计算的激子相及其邻近区域的强关联和强耦合效应
- 批准号:
21K03399 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)