Multiparametric Optical Microbe Sensing with Engineered Photonic-Plasmonic Nanostructures

利用工程光子等离子体纳米结构进行多参数光学微生物传感

基本信息

  • 批准号:
    1159552
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

ReinhardCBET-1159552Nanoparticle assemblies generate new properties that are different from those of the isolated particles and, therefore, offer tremendous opportunities for creating new capabilities on the nanoscale. This proposal seeks to take advantage of the fact that defined arrays of gold nanoparticles have engineerable plasmon resonances whose spatial and frequency distribution can be controlled through the morphology of the array. Since the exact plasmon resonance wavelength of a noble metal nanoparticles depend on the refractive index of the environment, nanostructured noble metal surfaces are colorimetric sensors. Aperiodic metal nanostructures sustain structural color patterns which enable entirely new sensing approaches based on spatial correlation imaging. In addition, nanostructured surfaces assembled from nanoparticle clusters as building blocks can efficiently localize incident electromagnetic fields and generate high E-field enhancements. Consequently, nanoparticle cluster arrays are also superb substrates for surface enhanced Raman spectroscopy. This proposal seeks to combine the advantageousphotonic and plasmonic properties of nanostructured surfaces to develop multiparametric responders that achieve enhanced optical microbe detection and identification performance through combined analysis of elastic and inelastic light scattering processes.Intellectual MeritsThe research in this project will develop a new class of multiparametric optical microbe sensors, that can identify and detect a broad range of microbes (viruses, bacteria, spores) with high fidelity due to two subsequent sensing stages in real time. A first stage of specificity will be achieved through antibody functionalization of the sensor surface. Binding of microbes to these antibodies will be detected through a colorimetric shift in the elastically scattered light. In the second analysis step in elastically scattered light is analyzed to obtain a vibrational SERS spectrum of the microbe surface. This spectrum serves as a fingerprint of the microbe and enables its identification when combined with multivariate data analysis and appropriate library spectra. We anticipate that the SERS based identification approach will enable microbe classifications on the strain level. The proposed approach of two subsequent identification stages achieves a significant improvement in the identification reliability over conventional optical biosensors. Because SERS allows an identification of organisms on the single cell level, the proposed multiparametric sensors could pave the way to an optical analysis of ?real world? samples that always contain a complex mixture of microbes. Besides these important sensing advances, the research in this proposal will also improve current capabilities to engineer photonic-plasmonic noble metal structures with defined optical responses.Broader ImpactReliable and rapid microbe detection is relevant in critical sensing areas such as environmental monitoring, food quality control, and homeland security. The proposed sensor could make optical microbe detection faster and more reliable and could thus impact all of the above sensing areas. In addition to the outlined scientific impacts, the research has clear educational and outreach components. The project will offer high school, undergraduate, and graduate students the opportunity to participate in a collaborative research and education program. It will form the basis for at least two PhD theses. In synergy with the laboratory research, this proposal will enable a substantial outreach program. The Principal Investigator (PI) organizes an annual NanoCamp for students from local inner city high schools, and both PI and Co-PI sponsor undergraduate students and interested high school students to obtain hands-on research experience in this interdisciplinary research effort. These outreach activities will help to enthuse junior researchers and high school students for the field of biosensing and science and technology in general.
Reinhardcbet-1159552Nanoparticle组件产生的新属性与孤立颗粒的属性不同,因此为在纳米级创建新功能提供了巨大的机会。该提案试图利用这一事实,即定义的金纳米颗粒具有可用的等离子体共振,其空间和频率分布可以通过阵列的形态来控制。由于高贵金属纳米颗粒的确切等离子体共振波长取决于环境的折射率,因此纳米结构的贵金属表面是比色的传感器。多个金属纳米结构维持结构颜色模式,该模式可以基于空间相关成像实现全新的传感方法。此外,从纳米颗粒簇组装的纳米结构表面可以有效地定位入射电磁场并产生高电子场的增强功能。因此,纳米颗粒簇阵列也是表面增强拉曼光谱法的出色底物。 This proposal seeks to combine the advantageousphotonic and plasmonic properties of nanostructured surfaces to develop multiparametric responders that achieve enhanced optical microbe detection and identification performance through combined analysis of elastic and inelastic light scattering processes.Intellectual MeritsThe research in this project will develop a new class of multiparametric optical microbe sensors, that can identify and detect a broad range of microbes (viruses,细菌,孢子​​)由于实时的两个随后的感测阶段而具有高富度性。特异性的第一阶段将通过传感器表面的抗体功能化来实现。微生物与这些抗体的结合将通过弹性散射的光的比色移来检测。在第二个分析步骤中,分析了弹性散射的光,以获得微生物表面的振动SERS光谱。该光谱是微生物的指纹,并在与多元数据分析和适当的库光谱结合使用时可以识别其识别。我们预计基于SERS的识别方法将在应变水平上实现微生物分类。随后的两个识别阶段的拟议方法可以显着提高常规光学生物传感器的可靠性。因为SERS允许在单细胞水平上识别生物,所以所提出的多参数传感器可以为“现实世界的光学分析”铺平道路?始终包含微生物混合物的样品。除了这些重要的感知进步外,该提案中的研究还将提高具有具有定义的光学响应的​​光子质量贵族金属结构的当前能力。Broader不可能和快速的微生物检测在关键的感应领域(如环境监测,食品质量控制和祖国安全)中相关。提出的传感器可以使光学微生物检测更快,更可靠,因此可能会影响上述所有传感区域。除了概述的科学影响外,该研究还具有明确的教育和外展成分。该项目将为高中,本科和研究生提供参加协作研究和教育计划的机会。它将构成至少两个博士学位论文的基础。在与实验室研究的协同作用下,该提案将实现大量的外展计划。首席研究员(PI)为来自当地城市高中的学生以及PI和Co-Pi赞助商的本科生以及有兴趣的高中生组织了一年的纳米宾夕法尼亚,以获得这项跨学科研究工作的动手研究经验。这些宣传活动将有助于使初级研究人员和高中生一般地研究生物传感,科学和技术领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bjoern Reinhard其他文献

Bjoern Reinhard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bjoern Reinhard', 18)}}的其他基金

Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAS-MNP: Elucidating Nanoplastics - Cell Interactions that Enhance Polycyclic Aromatic Hydrocarbon Uptake in an Intestinal Membrane Model
CAS-MNP:阐明纳米塑料 - 增强肠膜模型中多环芳烃吸收的细胞相互作用
  • 批准号:
    2032376
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Plasmon Coupling Correlation Spectroscopy
等离子耦合相关光谱
  • 批准号:
    1808241
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Elucidating Multiparametric Nanoparticle - Intestinal Membrane Interactions in an In Vitro Model System
阐明体外模型系统中的多参数纳米颗粒-肠膜相互作用
  • 批准号:
    1822246
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation
OP:用于对映体分离的手性力的等离子体增强
  • 批准号:
    1609778
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Frequency Domain Plasmon Fluctuation Spectroscopy For Single Biopolymer Mechanical Sensing
职业:用于单一生物聚合物机械传感的频域等离子体激元波动光谱
  • 批准号:
    0953121
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Rationally Designed Plasmonic Nanostructures for Rapid Bacteria Detection and Identification
合理设计的等离子体纳米结构用于快速细菌检测和识别
  • 批准号:
    0853798
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于贝塞尔光束的非远心光学系统及其在肿瘤双光子光动力治疗中的应用研究
  • 批准号:
    62375169
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
肿瘤微环境响应型近红外二区光学探针的设计及其用于肿瘤精准诊断研究
  • 批准号:
    52373141
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
介质-金属混合纳米腔与二维材料的相互作用及其光学调控
  • 批准号:
    12374347
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
硫系聚合物基相位型中红外微光学元件的飞秒激光直写方法研究
  • 批准号:
    62375224
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
  • 批准号:
    10735964
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Gel-based Optical-isolation Single-Cell 3D Spatial Multiomics
基于凝胶的光隔离单细胞 3D 空间多组学
  • 批准号:
    10473394
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Clinical Application of Photodynamic Antimicrobial Chemotherapy (PACT) for Corneal Infection
光动力抗菌化疗(PACT)治疗角膜感染的临床应用
  • 批准号:
    22K09835
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BCCMA: Targeting Gut-Microbiome in Veterans Deployment Related Gastrointestinal and Liver Diseases; CMA1- The Role of GWI Gut Microbiome in Susceptibility to Diarrheal Diseases
BCCMA:针对退伍军人部署相关胃肠道和肝脏疾病中的肠道微生物组;
  • 批准号:
    10485710
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
The Bioimaging Core
生物成像核心
  • 批准号:
    10443138
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了