CAREER: Frequency Domain Plasmon Fluctuation Spectroscopy For Single Biopolymer Mechanical Sensing

职业:用于单一生物聚合物机械传感的频域等离子体激元波动光谱

基本信息

  • 批准号:
    0953121
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

0953121ReinhardThis CAREER proposal describes a research plan for the development of a novel plasmon fluctuation spectroscopy and for the application of this sensor to characterize the mechanical properties of individual biopolymers without limitation in observation time. Plasmon coupling spectroscopy utilizes the distance-dependent near-field coupling between individual noble metal nanoparticles to quantify structural fluctuations in individual biopolymers in the frequency domain. The proposal also contains a strong educational component describing plans for training graduate and undergraduate students, as well as attracting high-school students to the natural sciences.Intellectual Merit. To date, plasmon coupling between individual pairs of noble metal nanoparticles, so called plasmon rulers, has been exclusively used for distance measurements in the time domain. In this application the method is further enhanced to exploit the distance dependence near-field interactions between individual noble metal nanoparticles to characterize structural fluctuations in the biopolymer tether in the frequency domain. To achieve the transition from a time to a frequency domain analysis, the proposed project will develop a new generation of plasmon rulers, detection approaches, and analysis schemes. The distance dependent plasmon coupling in this new generation of plasmon rulers will be systematically mapped, providing new insights into the underlying electromagnetic interactions between noble metal nanoparticles on length scales between 0.5 - 30 nm. The resulting technology will be able to analyze structural fluctuations in short (0.5 nm - 30 nm) DNAs and RNAs without the need to apply an external force. The targeted dynamic distance range is difficult to address with other sensors but is biologically highly relevant. Plasmon fluctuation spectroscopy's ability to monitor structural fluctuations in this range with high temporal resolution without limitation in total observation time will enable improved insights into the mechanical properties of DNAs and RNAs on the single molecule level and how these properties change as consequence of nucleoprotein complex formation.Broader Impact. Plasmon fluctuation spectroscopy enables the analysis of structural dynamics in individual biopolymers with higher temporal resolution and longer observation time than with fluorescence-based approaches. The technique will be applied to probe the mechanical properties of the nucleoprotein complex of the respiratory syncytial virus (RSV) to reveal the virus' fundamental regulation transcription and replication principles. RSV is the most common cause of bronchiolitis among infants and molecular understanding of its transcription and translation can pave the way to improved therapeutics and diagnostics. In addition to scientific impact, this CAREER plan will also have clear educational and outreach benefits. The project will offer high-school, undergraduate and graduate students the opportunity to participate in a collaborative research and education program. The interdisciplinary subject area of the proposed effort is of great interest to the general public. Synergistically with the laboratory research, the plan will enable a substantial outreach through the Principal Investigator's annual "NanoCamp" for students from local inner city high schools (whose students come primarily from underrepresented groups). The aim of the hands-on, week-long "camp" is to enable students to experience the excitement of nanotechnology in particular and of science in general. The Principal Investigator will sponsor undergraduate students and interested high school students who have completed NanoCamp to obtain hands-on research experience in the proposed interdisciplinary research effort.
0953121Reinhardthisthis职业建议描述了一项研究计划,用于开发新的等离子波动光谱,并应用该传感器来表征单个生物聚合物在观察时间中不限制的单个生物聚合物的机械性能。等离子耦合光谱利用单个贵金属纳米颗粒之间的距离依赖性近场耦合来量化频域中各个生物聚合物中的结构波动。该提案还包含一个强大的教育组成部分,描述了培训毕业生和本科生的计划,并吸引了高中生获得自然科学的优点。迄今为止,单个贵金属纳米颗粒(所谓的等离子体标尺)之间的等离子体耦合已仅用于时域中的距离测量。在此应用中,该方法进一步增强,以利用单个贵金属纳米颗粒之间的距离依赖性近场相互作用,以表征频域中生物聚合物束缚中的结构波动。为了实现从时间到频域分析的过渡,提议的项目将开发新一代的等离激子统治者,检测方法和分析方案。在新一代的等离子体统治者中,距离依赖的等离子体耦合将系统地绘制,从而在0.5-30 nm之间的长度尺度上对贵金属纳米颗粒之间的基本电磁相互作用提供了新的见解。所得技术将能够在短(0.5 nm -30 nm)DNA和RNA中分析结构波动,而无需施加外力。目标动态距离范围很难与其他传感器解决,但在生物学上具有高度相关。等离子体波动光谱在此范围内监测该范围内的结构波动的能力具有高时间分辨率,而无需在总观察时间内限制,将能够改善对DNA和RNA在单分子水平上的机械性能的见解,以及这些特性在核蛋白复合物形成的结果时如何变化。与基于荧光的方法相比,等离子波动光谱能够分析具有更高时间分辨率和更长的观察时间的单个生物聚合物的结构动力学。该技术将应用于探测呼吸综合病毒(RSV)的核蛋白复合物的机械性能,以揭示该病毒的基本调节转录和复制原理。 RSV是婴儿中支气管炎的最常见原因,分子对其转录和翻译的理解可以为改善治疗疗法和诊断的方法铺平道路。除了科学影响外,该职业计划还将具有明显的教育和外展益处。该项目将为高中,本科和研究生提供参与协作研究和教育计划的机会。拟议努力的跨学科学科领域对公众引起了极大的关注。该计划与实验室研究协同作用,将通过首席研究人员的年度“纳米宾夕级小学”进行实质性的宣传,以供当地内城高中的学生(其学生主要来自代表性不足的群体)。实践为期一周的“营地”的目的是使学生尤其是纳米技术,尤其是科学的兴奋。首席研究员将赞助本科生和有兴趣的高中生,他们完成了纳米认布,以获得拟议的跨学科研究工作的动手研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bjoern Reinhard其他文献

Bjoern Reinhard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bjoern Reinhard', 18)}}的其他基金

Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAS-MNP: Elucidating Nanoplastics - Cell Interactions that Enhance Polycyclic Aromatic Hydrocarbon Uptake in an Intestinal Membrane Model
CAS-MNP:阐明纳米塑料 - 增强肠膜模型中多环芳烃吸收的细胞相互作用
  • 批准号:
    2032376
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Plasmon Coupling Correlation Spectroscopy
等离子耦合相关光谱
  • 批准号:
    1808241
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Elucidating Multiparametric Nanoparticle - Intestinal Membrane Interactions in an In Vitro Model System
阐明体外模型系统中的多参数纳米颗粒-肠膜相互作用
  • 批准号:
    1822246
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation
OP:用于对映体分离的手性力的等离子体增强
  • 批准号:
    1609778
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Multiparametric Optical Microbe Sensing with Engineered Photonic-Plasmonic Nanostructures
利用工程光子等离子体纳米结构进行多参数光学微生物传感
  • 批准号:
    1159552
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Rationally Designed Plasmonic Nanostructures for Rapid Bacteria Detection and Identification
合理设计的等离子体纳米结构用于快速细菌检测和识别
  • 批准号:
    0853798
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于频率选择表面的电磁波角度选择性研究
  • 批准号:
    62361008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
  • 批准号:
    52377074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
背根神经节特异性传导针刺频率信号的神经环路研究
  • 批准号:
    82305050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非平稳条件下多变量洪水频率分析方法研究-以淮河流域为例
  • 批准号:
    42301026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
物理引导的机器学习求解频率域声波正反问题研究
  • 批准号:
    42374141
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307979
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307978
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor
基于频域模拟信号处理器的实时节能宽带频谱感测
  • 批准号:
    2318759
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mitochondrial Genetic Variation Across Human Tissues
人体组织的线粒体遗传变异
  • 批准号:
    10741135
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了