Multiscale Computational and Experimental Analysis of Deformation Mechanisms in Amorphous-Crystalline Metallic Materials with Microstructure Complexity

微结构复杂非晶金属材料变形机制的多尺度计算与实验分析

基本信息

  • 批准号:
    1807545
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYEnhancing the strength of a material is always at the expense of its ability to be purposely deformed or shaped, referred as ductility. Recently, inspired by biological materials, like nacre and dental enamel, a novel metallic composite which combines amorphous alloys (called metallic glass) with crystalline metals, such as copper or aluminum, is shown to have an appreciable strength improvement without sacrificing its ductility. However, up to date, the development of such materials is still at a 'trial and error' stage because: (i) the integration of metallic glass with crystalline metals leads to a complex material microstructure spanning a wide range of length scales from nanometers at the atomic scale to microns; (ii) many existing techniques, which either resolve the material as a collection of atoms or approximate it as a deformable body without considering its internal structure, are incapable to provide a full-scale interpretation on how such material responds to a mechanical forces like tension, compression, or shear. This project supports research addressing these problems through a combined computational and experimental analysis of the deformation in metallic composites over a range of length scales. This research will link the atomistic deformation physics with its overall mechanical performance. Two fundamental questions to be answered are: (a) how does the interface between the amorphous and crystalline phases contribute to their co-deformation? (b) how to architect the metallic composite microstructure such that its failure can be delayed? This research will advance the field by providing researchers with a platform that can be used in a rational design of high-performance materials for a variety of engineering applications such as biomedical implants, aircraft structures, and energy infrastructures. It will expose the next-generation workforce to a broad range of knowledge and skills related to mathematics, physics, mechanics, supercomputing, materials synthesis, processing, and characterization. Moreover, several kits of metallic composites will be developed for illustrating how little changes of the volume amounts of each phase in composites can significantly change its properties. These kits will be presented to science teachers at Gilbert middle and high schools in Iowa for promoting science and engineering to K-12 students.TECHNICAL SUMMARYIn the search of strong and ductile metallic materials, one strategy is introducing interfaces, such as grain boundaries and twin boundaries, to resist dislocation motions. This strategy is usually accompanied by a decrease in ductility although it does lead to an enhancement in strength. By contrast, instead of blocking dislocations, the amorphous-crystalline metallic composites utilize the amorphous phases to absorb dislocations, and may fundamentally change 'the strength-ductility dilemma'. Nevertheless, a methodical engineering approach for developing such composites is not achieved so far due to a knowledge gap in correlating its multi-level microstructure with the overall mechanical performance. This project supports research to fill this gap. The mechanical behavior of amorphous-crystalline metallic composites with microstructure complexities will be analyzed from the atomistic to the microscale. Concurrent atomistic-continuum models that resemble the microstructure of the amorphous-crystalline metallic composite fabricated at the Department of Energy-Ames Laboratory will be developed. Multiscale simulations of plastic flow in such material will be conducted to gain the insight into the interplay between dislocations and shear transformation zones. The intrinsic difference in mechanisms for the deformation in magnetron sputtered orthotropic nano-laminates and ball-milled polycrystalline aggregates will be identified. This research opens up the possibility of architecting the metallic composites microstructure for a desired property. Many aspects of this research will not be limited to metals but are readily extendable to other classes of materials, such as biomimetic ceramics, metallic glass-based composites for electromechanical devices, corrosion-, and radiation-resistant materials for nuclear power plants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料的强度始终以其故意变形或形状的能力为代价,称为延性。最近,受生物材料的启发,例如Nacre和Dental Enamel,这是一种新型的金属复合材料,将非晶合金(称为金属玻璃)与晶体金属(例如铜或铝)结合在一起,被证明具有可观的强度改善而无需牺牲其耐耐性。但是,最新的此类材料的开发仍处于“反复试验和误差阶段”,因为:(i)将金属玻璃与晶体金属的整合导致复杂的材料微结构,该微观结构跨越了从原子尺度上的纳米纳米到微米的纳米范围范围广泛的范围; (ii)许多现有技术,它们要么将材料作为原子集合解决,要么将其近似为可变形的身体而无需考虑其内部结构,因此无法提供有关此类材料如何响应诸如紧张,压缩或剪切的机械力的响应的完整解释。该项目通过对金属复合材料的变形在一系列长度范围内的变形来支持解决这些问题的研究。这项研究将将原子变形物理学与其整体机械性能联系起来。要回答的两个基本问题是:(a)无定形和结晶阶段之间的接口如何有助于它们的共同形成? (b)如何构建金属复合微观结构以使其故障延迟?这项研究将通过为研究人员提供一个可以用于高性能材料的平台,用于用于各种工程应用,例如生物医学植入物,飞机结构和能源基础设施。它将将下一代劳动力暴露于与数学,物理,力学,超级计算,材料合成,处理和表征有关的广泛知识和技能。此外,将开发几个金属复合材料试剂盒,以说明复合材料中每个阶段的体积数量的变化几乎可以显着改变其性质。这些套件将介绍给爱荷华州吉尔伯特中学和高中的科学老师,以促进K-12学生的科学和工程。技术摘要在搜索强和延性的金属材料的搜索中,一种策略是引入界面,例如谷物边界和双界,以抵抗脱位运动。该策略通常伴随着延展性的降低,尽管它确实会增强强度。相比之下,无定形金属复合材料而不是阻塞位错,而是利用非晶相的阶段来吸收脱位,并可能从根本上改变“强度脱牙性难题”。然而,到目前为止,由于知识差距将其多层微观结构与整体机械性能相关联,因此无法实现一种有条不紊的工程方法。该项目支持研究以填补这一空白。将从原子学到显微镜的无定形金属复合材料具有微观结构复杂性的无定形金属复合材料的机械行为。将开发出类似于在能量AMES实验室制造的无定形 - 晶体金属复合材料的微观结构的同时原子 - 胞源模型。将进行此类材料中塑性流的多尺度模拟,以洞悉脱位和剪切转化区之间的相互作用。将鉴定出磁控蛋白溅射的正交纳米层和球磨球多晶骨料的变形机制的内在差异。这项研究打开了为所需特性构建金属复合材料微结构的可能性。这项研究的许多方面不仅限于金属,但可以易于扩展到其他类别的材料,例如仿生陶瓷,用于机电设备的基于金属玻璃的复合材料,用于机电设备的复合材料,腐蚀和耐核电站的耐药物材料。该奖项颁发了NSF的法定任务,并通过评估构成的构成商品,反映了NSF的法定构成和众所周知的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical degradation due to vacancies produced by grain boundary corrosion of steel
  • DOI:
    10.1016/j.actamat.2020.08.080
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Denizhan Yavas;T. Phan;Liming Xiong;K. Hebert;A. Bastawros
  • 通讯作者:
    Denizhan Yavas;T. Phan;Liming Xiong;K. Hebert;A. Bastawros
A finite-temperature coarse-grained atomistic approach for understanding the kink-controlled dynamics of micrometer-long dislocations in high-Peierls-barrier materials
  • DOI:
    10.1557/s43579-022-00238-w
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Rigelesaiyin Ji;T. Phan;Youping Chen;D. McDowell;Liming Xiong
  • 通讯作者:
    Rigelesaiyin Ji;T. Phan;Youping Chen;D. McDowell;Liming Xiong
A combined experimental and computational analysis on how material interface mediates plastic flow in amorphous/crystalline composites
  • DOI:
    10.1557/s43578-021-00269-4
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Amir Abdelmawla;T. Phan;Liming Xiong;A. Bastawros
  • 通讯作者:
    Amir Abdelmawla;T. Phan;Liming Xiong;A. Bastawros
Quantifying the dynamics of dislocation kinks in iron and tungsten through atomistic simulations
  • DOI:
    10.1016/j.ijplas.2020.102675
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Rigelesaiyin Ji;T. Phan;Hao Chen;L. Xiong
  • 通讯作者:
    Rigelesaiyin Ji;T. Phan;Hao Chen;L. Xiong
Metallic glass instability induced by the continuous dislocation absorption at an amorphous/crystalline interface
  • DOI:
    10.1016/j.actamat.2020.02.038
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Thanh Phan;Rigelesaiyin, Ji;Xiong, Liming
  • 通讯作者:
    Xiong, Liming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liming Xiong其他文献

Induced hourglass and the equivalence between hamiltonicity and supereulerianity in claw-free graphs
诱导沙漏以及无爪图中哈密顿性与超欧拉性的等价
  • DOI:
    10.1016/j.disc.2014.05.018
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Liming Xiong
  • 通讯作者:
    Liming Xiong
Characterizing Forbidden Pairs for the Edge-Connectivity of a Connected Graph to Be Its Minimum Degree
将连通图的边连通性的禁止对刻画为其最小度
  • DOI:
    10.3390/axioms11050219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Junfeng Du;Ziwen Huang;Liming Xiong
  • 通讯作者:
    Liming Xiong
Even factor of a graph with a bounded number of components
具有有限数量组件的图的偶数因子
Maximally edge-connected graphs and Zeroth-order general Randić index for
最大边连通图和零阶一般 Randiä 指数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Guifu Su;Liming Xiong;Xiaofeng Su
  • 通讯作者:
    Xiaofeng Su
Edge degree conditions for subpancyclicity in line graphs
  • DOI:
    10.1016/s0012-365x(97)00257-4
  • 发表时间:
    1998-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liming Xiong
  • 通讯作者:
    Liming Xiong

Liming Xiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liming Xiong', 18)}}的其他基金

Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    2322675
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    1930093
  • 财政年份:
    2020
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Interactions of Multiple Phase Transformations and Dislocations: Modeling and Simulation from Atomistic to Microscale
多相变和位错的相互作用:从原子到微观尺度的建模和仿真
  • 批准号:
    1536925
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Functional analysis of the FIERY1 Signaling Network
FIERY1 信令网络的功能分析
  • 批准号:
    0446359
  • 财政年份:
    2005
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

二维MXenes合成氨电催化剂多尺度模拟设计及实验研究
  • 批准号:
    21878272
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
一维非晶合金纳米材料的多尺度计算模拟与实验研究
  • 批准号:
    51771123
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
量子点复合材料发光实现纳秒纳米尺度应力测量研究
  • 批准号:
    11672298
  • 批准年份:
    2016
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
基于蛋白质组学和单细胞实验数据的细胞信号传导系统的多尺度数学建模
  • 批准号:
    11571368
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于热力学与动力学计算的冰铜吹炼过程多尺度模拟研究
  • 批准号:
    51504018
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
  • 批准号:
    10756808
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了