Interactions of shapeable boundaries with flowing fluids:Experiments and mathematical modeling

可塑边界与流动流体的相互作用:实验和数学建模

基本信息

  • 批准号:
    1805506
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Many processes in nature, industry and everyday life involve the coupled motions of fluids and compliant objects or boundaries. Understanding these complex interactions is challenging but important if these effects are to be exploited or controlled in engineering, industrial and technological applications. The proposed projects identify key problems from the natural and applied sciences yet to be studied as fluid-structure interactions and which stand to benefit from laboratory experiments and mathematical modeling. Focus areas include solid boundaries that change shape due to fluidic erosion and dissolution, as well as liquid interfaces and films reshaped by flows. The proposed work focuses on the fundamental interactions to be revealed by experiments and reproduced in models. These studies will provide insight into the processes that shape natural landforms and how such effects can be used in chemical, pharmaceutical and manufacturing applications. The program will also train and educate undergraduate and graduate students towards careers in the mathematical sciences and engineering, and it will further national math and science education initiatives through the engagement of New York City high school students from under-represented groups.Fundamental flow-boundary interaction mechanisms will be studied through experiments on the evolution of erodible boundaries by internal flows, the dissolution of surfaces due to self-generated convective flows, and the flow-driven deformation and inflation of films and interfaces. These settings are chosen to closely link with mathematical models to be developed based on the relevant fluid dynamics (e.g. boundary-layer and free-streamline theories) coupled to boundary evolution equations (e.g. shear-stress erosion laws, Fick's law of diffusion, and the Young-Laplace law). Experiments and models will inform one another to understand the role of boundary-flow feedback processes in dictating the shape dynamics, with emphasis placed on characterizing the singular geometries (e.g. corners, spikes, surface patterning) and singular events (e.g. bifurcations, geometric shocks, rupture) that play critical roles in these processes. How these results extend to more complex geometries (e.g. erodible/dissolvable flow networks) and in more complex situations (e.g. shape evolution coupled to free motion in a fluid) will also be explored. A broader goal is to extend the reach of fluid-structure interactions by expanding the scope of problems viewed in this way and by providing new techniques. Broader scientific impacts pertain to better understanding flow-driven erosion, corrosion, melting and dissolution in the context of geomorphological, chemical and industrial processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然,工业和日常生活中的许多过程都涉及流体和兼容对象或边界的耦合动作。理解这些复杂的互动是具有挑战性的,但如果要在工程,工业和技术应用中利用或控制这些效果,则很重要。拟议的项目从自然和应用科学中确定了关键问题,尚未研究为流体结构的相互作用,并且可以从实验室实验和数学建模中受益。焦点区域包括由于流体侵蚀和溶解而改变形状的固体边界,以及由流量重塑的液体界面和膜。拟议的工作着重于实验揭示的基本相互作用,并在模型中复制。这些研究将洞悉塑造自然地形的过程以及如何在化学,药物和制造应用中使用这种影响。 The program will also train and educate undergraduate and graduate students towards careers in the mathematical sciences and engineering, and it will further national math and science education initiatives through the engagement of New York City high school students from under-represented groups.Fundamental flow-boundary interaction mechanisms will be studied through experiments on the evolution of erodible boundaries by internal flows, the dissolution of surfaces due to self-generated convective流动,流动驱动的变形和膜和界面的通胀。选择这些设置是与基于相关流体动力学(例如边界上层和自由流程线理论)与边界演化方程(例如,剪切压力侵蚀法,Fick的扩散定律以及年轻的拉普拉斯法则)耦合的数学模型紧密联系。实验和模型将互相告知,了解边界流反馈过程在决定形状动力学中的作用,重点是表征奇异的几何形状(例如角落,角落,尖峰,表面图案)和奇异事件(例如,分布,几何,几何冲击,破裂)在这些过程中起着重要的作用。这些结果如何扩展到更复杂的几何形状(例如易怒/溶解的流动网络),在更复杂的情况下(例如,形状演化与流体中的自由运动耦合)也将被探索。一个更广泛的目标是通过以这种方式和提供新技术查看的问题范围来扩展流体结构相互作用的范围。在地貌,化学和工业过程的背景下,更广泛的科学影响与更好地理解流动驱动的侵蚀,腐蚀,融化和解散有关。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flight stability of wedges
  • DOI:
    10.1016/j.jfluidstructs.2021.103218
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    P. Sanaei;Guanhua Sun;Huilin Li;C. Peskin;Leif Ristroph
  • 通讯作者:
    P. Sanaei;Guanhua Sun;Huilin Li;C. Peskin;Leif Ristroph
The role of shape-dependent flight stability in the origin of oriented meteorites
形状相关的飞行稳定性在定向陨石起源中的作用
Equilibrium Shapes and Their Stability for Liquid Films in Fast Flows
快速流动中液膜的平衡形状及其稳定性
  • DOI:
    10.1103/physrevlett.121.094501
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ganedi, Likhit;Oza, Anand U.;Shelley, Michael;Ristroph, Leif
  • 通讯作者:
    Ristroph, Leif
Hydrodynamic tweezing: Using water waves to push and pull
水动力镊子:利用水波推拉
  • DOI:
    10.1103/physrevfluids.5.110512
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sherif, A.;Ristroph, L.
  • 通讯作者:
    Ristroph, L.
Anomalous Convective Flows Carve Pinnacles and Scallops in Melting Ice
异常对流在融化的冰中雕刻出尖峰和扇贝
  • DOI:
    10.1103/physrevlett.128.044502
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Weady, Scott;Tong, Joshua;Zidovska, Alexandra;Ristroph, Leif
  • 通讯作者:
    Ristroph, Leif
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leif Ristroph其他文献

Sculpting of an erodible body by flowing water
用流水雕塑可腐蚀的身体
Centrifugal Flows Drive Reverse Rotation of Feynman's Sprinkler.
离心流驱动费曼喷头反向旋转。
  • DOI:
    10.1103/physrevlett.132.044003
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Kaizhe Wang;Brennan Sprinkle;Mingxuan Zuo;Leif Ristroph
  • 通讯作者:
    Leif Ristroph
Linear drag law for high-Reynolds-number flow past an oscillating body
经过振荡体的高雷诺数流的线性阻力定律
  • DOI:
    10.1103/physrevfluids.1.033202
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Agre;S. Childress;Jun Zhang;Leif Ristroph
  • 通讯作者:
    Leif Ristroph
Sculpting with flow
  • DOI:
    10.1017/jfm.2017.890
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Leif Ristroph
  • 通讯作者:
    Leif Ristroph
Dynamics, Control, And Stability Of Fruit Fly Flight
果蝇飞行的动力学、控制和稳定性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leif Ristroph
  • 通讯作者:
    Leif Ristroph

Leif Ristroph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leif Ristroph', 18)}}的其他基金

Shape dynamics of melting ice: Experiments, simulations, modeling and analysis
融化冰的形状动力学:实验、模拟、建模和分析
  • 批准号:
    2206573
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Mathematical Modeling, Physical Experiments, and Biological Data for Understanding Flow Interactions in Collective Locomotion
职业:通过数学建模、物理实验和生物数据来理解集体运动中的流相互作用
  • 批准号:
    1847955
  • 财政年份:
    2019
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103876
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于三维可变形模型和深度学习的正畸三维面部模型构建研究
  • 批准号:
    62306017
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
具有多体相互作用的可变形粒子及细胞的多维度模拟
  • 批准号:
    12374204
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于三维可变形模型和深度学习的正畸三维面部模型构建研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
可变形多孔介质多尺度热质传递和热流固耦合机理研究
  • 批准号:
    52376079
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高速可变形飞行器柔性蒙皮电磁散射机理及散射特性一体化建模研究
  • 批准号:
    U2241204
  • 批准年份:
    2022
  • 资助金额:
    269.00 万元
  • 项目类别:
    联合基金项目

相似海外基金

Additive Technology for 3D-Shapeable Millimeter-Wave Passive Components
3D 可成形毫米波无源元件的增材技术
  • 批准号:
    528098204
  • 财政年份:
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了