Molecularly selective sensors based on organic semiconductors and artificial receptors: demonstrations and scaling studies

基于有机半导体和人工受体的分子选择性传感器:演示和规模研究

基本信息

  • 批准号:
    1804915
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

A robust sensing technology, suitable for wearable devices, will be developed for continuous monitoring of molecules secreted by the human body. Electrically active polymers will be combined with molecularly selective polymers to sense a range of molecules in a sensitive and selective way. The sensor fabrication process will take advantage of the same technology developed to fabricate microprocessors, thus giving access to a wide range of sensor sizes and shapes in order to determine the optimum sensor geometry. Furthermore, the electrical response of the sensor will be modeled mathematically in order to predict the best sensor design. Finally, several sensors will be arrayed to demonstrate the simultaneous detection of several molecules of interest. The development of a general sensing technology based on plastics has the potential to produce a substantial impact in the world of low-cost wearable sensors suitable for non-hospital based applications. Furthermore, the workforce trained with these funds will have an interdisciplinary outlook, being equally comfortable with electronics and with biomedical applications in the realm of analytical chemistry.Enzyme-based sensing is not robust for wearables or measurements in non-controlled environments. A new transduction method is proposed where an organic electrochemical transistor (OECT) is functionalized with a robust molecularly imprinted polymer (MIP) incorporated in a membrane. The MIP acts as an artificial receptor and selectively binds to the molecule that was imprinted in it during the fabrication phase. This is an entirely new sensor device concept, which incorporates selectivity (from the membrane) and sensitivity (thanks to the gain given by the transistor). This approach works in a cortisol sensor, which is compatible with wearable electronics as it is sensitive (thanks to the electronic gain of the transistor), operates at low voltages and can be fabricated on flexible substrates. Device scaling studies will demonstrate that sensitivity and range can be controlled with device geometry. The effect of processing on the selectivity and sensitivity of the membrane will be studied as well. Ultimately these experimental data will be used to build and validate a complete device model, which will give insights into the device physics of the sensor and will be used for a priori design of sensors with arbitrary architectures. Because the concept of OECT and artificial receptor membranes is general, the model will be a useful design tool for this entire family of novel sensors.Finally, the MIP-functionalization approach is quite general as will be demonstrated by building a multiplexed sensor array that will sense two hormones (cortisol and adrenaline) in addition to other electrolytes in a single sample. A high-school teacher will be involved in the project with the goal of using the materials investigated to fabricate a ?visible? transistor, i.e. a device where the switching process can be viewed by naked eye. The goal is to provide a simple demonstration for high-school students helping them understand the basic functionality of the device that is at the heart of the IT revolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
适用于可穿戴设备的强大传感技术将开发用于对人体分泌的分子的连续监测。电活动聚合物将与分子选择性聚合物结合使用,以敏感和选择性的方式感知一系列分子。传感器制造工艺将利用制造微处理器开发的相同技术,从而访问各种传感器尺寸和形状,以确定最佳的传感器几何形状。此外,将使用数学建模传感器的电响应,以预测最佳的传感器设计。最后,将对几个传感器进行数组,以证明对几个感兴趣的分子的同时检测。基于塑料的一般传感技术的开发有可能对适合非医院应用的低成本可穿戴传感器产生重大影响。此外,接受这些资金训练的劳动力将具有跨学科的前景,对电子产品同样舒适,并且在分析化学领域中使用生物医学应用。基于酶的感应对可穿戴设备或在非控制环境中的测量值不强。提出了一种新的转导方法,其中有机电化学晶体管(OECT)用掺入膜中的强大分子印刷聚合物(MIP)功能化。 MIP充当人造受体,并选择性地结合在制造阶段中印有其印记的分子。这是一个全新的传感器设备概念,它结合了(来自膜)和灵敏度(由于晶体管给出的增益)。这种方法可在皮质醇传感器中起作用,该传感器与可穿戴电子设备兼容(由于晶体管的电子增益),可在低压下运行,可以在柔性基板上制造。设备缩放研究将证明可以通过设备几何形状控制灵敏度和范围。也将研究加工对膜选择性和灵敏度的影响。最终,这些实验数据将用于构建和验证完整的设备模型,该模型将洞悉传感器的设备物理,并将用于具有任意体系结构的传感器的先验设计。由于OECT和人造受体膜的概念是一般的,因此该模型将是整个新型传感器家族的有用设计工具。从本文中,MIP官能化方法是相当一般的,正如将通过在单个单个样品中构建两个激素(皮质醇和肾上腺素)的多重传感器阵列所证明的。一位高中老师将参与该项目,目的是使用所调查的材料来制造可见?晶体管,即可以通过肉眼查看开关过程的设备。目的是为高中生提供一个简单的演示,以帮助他们了解IT革命核心设备的基本功能。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices
  • DOI:
    10.1021/acsenergylett.1c01625
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Siew Ting Melissa Tan;T. Quill;Maximilian Moser;G. LeCroy;Xingxing Chen;Yilei Wu;Christopher J Takacs;Alberto Salleo;Alexander Giovannitti
  • 通讯作者:
    Siew Ting Melissa Tan;T. Quill;Maximilian Moser;G. LeCroy;Xingxing Chen;Yilei Wu;Christopher J Takacs;Alberto Salleo;Alexander Giovannitti
High‐Gain Chemically Gated Organic Electrochemical Transistor
  • DOI:
    10.1002/adfm.202010868
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    S. T. M. Tan;Alexander Giovannitti;A. Melianas;Maximilian Moser;Benjamin L. Cotts;Devan Singh;I. McCulloch-I
  • 通讯作者:
    S. T. M. Tan;Alexander Giovannitti;A. Melianas;Maximilian Moser;Benjamin L. Cotts;Devan Singh;I. McCulloch-I
Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration
  • DOI:
    10.1002/adhm.201901321
  • 发表时间:
    2019-11-12
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Keene, Scott T.;Fogarty, Daragh;Parlak, Onur
  • 通讯作者:
    Parlak, Onur
Operation mechanism of organic electrochemical transistors as redox chemical transducers
有机电化学晶体管作为氧化还原化学传感器的工作机制
  • DOI:
    10.1039/d1tc02224e
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Tan, Siew Ting;Keene, Scott;Giovannitti, Alexander;Melianas, Armantas;Moser, Maximilian;McCulloch, Iain;Salleo, Alberto
  • 通讯作者:
    Salleo, Alberto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Salleo其他文献

Gadolinium is a powerful blocker of the activation of nematocytes of Pelagia noctiluca.
钆是一种强效阻断剂,可抑制夜光藻线虫细胞的活化。
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Alberto Salleo;G. Spada;Rosa Barbera
  • 通讯作者:
    Rosa Barbera
New muscle fiber production during compensatory hypertrophy.
代偿性肥大期间新肌纤维的产生。
  • DOI:
  • 发表时间:
    1980
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Alberto Salleo;Giuseppe Anastasi;GIUSPPA LA Spada;G. Falzea;MARIA G. Denaro
  • 通讯作者:
    MARIA G. Denaro
Bias Stress Effects in Organic Thin Film Transistors
有机薄膜晶体管中的偏置应力效应

Alberto Salleo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Salleo', 18)}}的其他基金

Structure-property relationships in novel conjugated mixed conductors
新型共轭混合导体的结构-性能关系
  • 批准号:
    1808401
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER:TDM Solar Cells: Collaborative Research: 30%-Efficient, Stable Perovskite/Silicon Monolithic Tandem Solar Cells
EAGER:TDM%20Solar%20Cells:%20%20Collaborative%20Research:%20%20%2030%-高效、%20Stable%20钙钛矿/硅%20Monolithic%20Tandem%20Solar%20Cells
  • 批准号:
    1664669
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
E2CDA: Type II: A new non-volatile electrochemical transistor as an artificial synapse: device scaling studies
E2CDA:II 型:作为人工突触的新型非易失性电化学晶体管:器件缩放研究
  • 批准号:
    1739795
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
DMREF - Collaborative Research: Developing design rules for enhancing mobility in conjugated polymers
DMREF - 协作研究:开发增强共轭聚合物迁移率的设计规则
  • 批准号:
    1533987
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Understanding the Links among Structure, Processing, and Electronic/Ionic Properties in Soft Mixed Conductors
了解软混合导体的结构、加工和电子/离子特性之间的联系
  • 批准号:
    1507826
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
UNS: Fundamental studies of charge transfer states at organic donor-acceptor interfaces for photovoltaics
UNS:光伏有机供体-受体界面电荷转移态的基础研究
  • 批准号:
    1510481
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineered Grain Boundaries and their Properties in Crystalline Organic Semiconductors
晶体有机半导体中的工程晶界及其特性
  • 批准号:
    1205752
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Materials World Network: The Ideal Nanowire Transistor-Materials Development for Contact-Doped ZnO nanowires
材料世界网:理想的纳米线晶体管材料开发接触掺杂氧化锌纳米线
  • 批准号:
    1007886
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Scalable Synthesis and Metrology of Epitaxial Graphene on SiC
SiC 上外延石墨烯的可扩展合成和计量
  • 批准号:
    0926212
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Micro-structure and Electrical Properties in Thin Films of Semicrystalline Conjugated Polymers
职业:半晶共轭聚合物薄膜的微观结构和电性能
  • 批准号:
    0645488
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

PDMS基超薄疏水分子筛修饰的高选择性半导体气体传感器研究
  • 批准号:
    62374166
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于刺激响应调控的聚合物膜电位型传感器用于多组分检测
  • 批准号:
    21874151
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
柔性可穿戴电化学传感器及其对汗液中关键分子标记物的实时检测研究
  • 批准号:
    61801473
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
发展光气及替代品的特异性有机反应及其传感应用
  • 批准号:
    21772188
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Large scale manufacturing of Ion Selective Sensors for Smart Healthcare
用于智能医疗的离子选择性传感器的大规模制造
  • 批准号:
    10046071
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant for R&D
Development of selective and highly sensitive organic thin film transistor based bio sensors
开发基于选择性和高灵敏度有机薄膜晶体管的生物传感器
  • 批准号:
    RGPIN-2020-04079
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Development of selective and highly sensitive organic thin film transistor based bio sensors
开发基于选择性和高灵敏度有机薄膜晶体管的生物传感器
  • 批准号:
    RGPIN-2020-04079
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Graphene-Metal Oxide Gas Sensors for Low Cost and Low Power Selective Room Temperature Gas Sensing (MANGO)
用于低成本和低功耗选择性室温气体传感的石墨烯金属氧化物气体传感器 (MANGO)
  • 批准号:
    105889
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Development of selective and highly sensitive organic thin film transistor based bio sensors
开发基于选择性和高灵敏度有机薄膜晶体管的生物传感器
  • 批准号:
    RGPIN-2020-04079
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了