Collaborative Research: Ionic Amplifiers for Biosensing
合作研究:用于生物传感的离子放大器
基本信息
- 批准号:1803262
- 负责人:
- 金额:$ 19.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature has evolved complex pathways to amplify the signal from the detection of low concentrations of ions or molecules. A robust, man-made amplifier system with similar control and amplification of ionic and molecular signals as those achieved in Nature will be helpful for probing biological channels with ultra-low conductivities (like those important in diabetes) and understanding biological processes. Inspired by biology, this research will focus on development of the first steps to prepare ionic circuits with amplifying properties built on the principles of both electronic integrated circuits and Nature?s signaling pathways. Prototypes of ionic circuits will be prepared using nanopores with controlled geometry and surface chemistry as the building blocks. The investigators chose nanopores as building blocks, because biological channels and pores in a biological cell create the first step of biological amplification. The interdisciplinary program will create an excellent training environment for graduate and undergraduate students. Visits of students from local schools at both universities are also planned with hands-on activities on nanotechnology and biosensing.The overarching goal of the research is to design a generic route for ionic amplification and building ionic transistors with millisecond response time for biosensing applications. Nanopores in various materials including silicon nitride, polymer films and glass nanopipettes will be rendered ionic transistors by tuning their surface characteristics and geometries. The nanoporous transistors will be three terminal systems, which will function according to principles similar to those of semiconductor-based transistors. In the ionic systems constructed, instead of electrons, anions will carry negative charge, and, instead of holes, cations will carry positive charge. Nanoscale dimensions of the system are required for a quick temporal response, as movement of only a few ions or molecules will lead to changes in the measured signal. Connecting two ionic transistors in a circuit will lead to preparation of an ionic equivalent of a Darlington amplifier, where current gain is equal to a product of amplifications of the two component transistors. Application of the Darlington amplifier to probe ion channels with ultralow conductivities will be demonstrated as well. Preparation of an ionic differential amplifier will also be explored. With these amplifiers, in principle, thousand-fold amplification might be achieved, making measuring femto-Ampere currents accessible.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然已经发展出复杂的途径,以从低浓度的离子或分子的检测中扩增信号。 具有相似控制和对离子和分子信号的放大的健壮的人造放大器系统与自然界中的离子和分子信号相似,将有助于探测具有超低导率的生物学通道(例如在糖尿病中很重要的)并了解生物学过程。受到生物学的启发,这项研究将集中于制定基于电子综合电路和自然信号通路的原理的放大特性的第一步制备离子电路的第一步。将使用具有控制的几何形状和表面化学作为组成块的纳米孔来制备离子电路的原型。研究人员选择纳米孔作为基础,因为生物学细胞中的生物通道和毛孔创造了生物学扩增的第一步。跨学科计划将为研究生和本科生创造出色的培训环境。还计划通过对纳米技术和生物传感的动手活动来访问当地学校的学生。研究的总体目标是为离子放大的通用途径设计,并用毫秒响应时间来建立离子晶体管的生物透射时间。各种材料中的纳米孔(包括氮化硅,聚合物膜和玻璃纳米夹)将通过调整其表面特性和几何形状来渲染离子晶体管。纳米多孔晶体管将是三个终端系统,该系统将根据与基于半导体的晶体管相似的原理起作用。在构建的离子系统中,阴离子将带有负电荷,而阳离子将带有正电荷。快速的时间响应需要系统的纳米级尺寸,因为仅几个离子或分子的运动将导致测量信号的变化。在电路中连接两个离子晶体管将导致制备达灵顿放大器的离子等效物,其中电流增益等于两个组分晶体管的放大产物。还将证明达灵顿放大器在具有超低电导率的探测离子通道上的应用。还将探讨离子差分放大器的准备。通过这些放大器,原则上可以实现数千倍的扩增,从而可以访问Femto-Ampere电流。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和更广泛的影响审查标准来评估NSF的法定任务。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionic amplifying circuits inspired by electronics and biology
- DOI:10.1038/s41467-020-15398-3
- 发表时间:2020-03-26
- 期刊:
- 影响因子:16.6
- 作者:Lucas, Rachel A.;Lin, Chih-Yuan;Siwy, Zuzanna S.
- 通讯作者:Siwy, Zuzanna S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lane Baker其他文献
Probing Electron Transfer and Ion Transfer Coupling Processes at the Liquid/Liquid Interfaces by Pipette Electrodes
用移液器电极探测液/液界面处的电子转移和离子转移耦合过程
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4
- 作者:
Xin Zhang;Haomin Wang;Celeste Morris;Chaoyue Gu;Mingzhi Li;Lane Baker;Yuanhua Shao - 通讯作者:
Yuanhua Shao
Lane Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lane Baker', 18)}}的其他基金
Electrochemical Imaging with Ion Channels
离子通道电化学成像
- 批准号:
2220852 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
Collaborative Research: Ionic Amplifiers for Biosensing
合作研究:用于生物传感的离子放大器
- 批准号:
2220830 - 财政年份:2022
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Planning Grant: Industry University Cooperative Research Center (IUCRC) for Bioanalytic Metrology (CBM), Indiana University
规划资助:印第安纳大学工业大学生物分析计量学(CBM)合作研究中心(IUCRC)
- 批准号:
1747750 - 财政年份:2018
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Electrochemical Imaging with Ion Channels
离子通道电化学成像
- 批准号:
1808133 - 财政年份:2018
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Nanoimprint Lithography Instrument for Research and Education
MRI:购买用于研究和教育的纳米压印光刻仪器
- 批准号:
1726642 - 财政年份:2017
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Ion Channel Probes for Scanning Ion Conductance Microscopy
用于扫描离子电导显微镜的离子通道探针
- 批准号:
1507341 - 财政年份:2015
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Mimicking the Nuclear Pore Complex with Protein Hydrogels
用蛋白质水凝胶模拟核孔复合体
- 批准号:
0906843 - 财政年份:2009
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
相似国自然基金
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
- 批准号:52302260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反常HfO2基铁电薄膜微束离子精准调控亚稳相的研究
- 批准号:52302151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
两性离子均孔膜的构筑及其抗污染机制研究
- 批准号:22308053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216162 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246864 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246863 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216256 - 财政年份:2023
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant