Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids

合作研究:了解环境相容的质子离子液体的润滑机制

基本信息

  • 批准号:
    2246864
  • 负责人:
  • 金额:
    $ 27.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

There is growing demand for engineering systems and functional materials with improved energy efficiency and longer lifetime through improved friction, wear, and lubrication performance, also known as tribological performance. This demand is driven by economic and societal needs such as minimizing greenhouse gas emissions, ensuring energy security, and improving industrial output and competitiveness. Ionic liquids (ILs) are molten salts with tunable composition and melting points below 100ºC. Their physical and chemical properties make them promising lubricating fluids. However, the high cost and corrosiveness of common ILs combined with a poor understanding of the relationship between IL molecular structure and lubrication performance has limited large-scale utilization of ILs in tribological applications. A class of low-cost, eco-friendly, non-corrosive protic ionic liquids (PILs) called choline amino acid PILs has emerged as a possible alternative to these common ILs. This project seeks to understand how PIL molecular structures affect their arrangement and reaction at solid sliding interfaces. The project will also leverage the complementary expertise and resources of the principal investigators at the University of Texas-Austin (UT-Austin) and Rochester Institute of Technology (RIT) to enhance the quality, size, and diversity of the US engineering workforce through training and education opportunities for undergraduate and graduate students from diverse backgrounds and underrepresented groups in STEM.The research project will identify links between the molecular structure of choline amino acid PILs – a class of halogen-free, eco-friendly PILs – and their functional performance (i.e., nanoscale and macroscale lubricating behavior). The research will also examine how the functional behavior emerges from the interfacial processes occurring at solid/PILs interfaces in response to spatial confinement and applied normal pressure and shear forces. The working hypothesis is that multiple interfacial processes, including surface adsorption, interfacial phase transformation, and shear-induced mechano-chemical reaction, underpin the promising lubricating properties of choline amino acid PILs; in addition, the kinetics of these processes can be controlled by tailoring the molecular structure of the ions (e.g., length of the alkyl chains). The team’s complementary expertise and instrumentation will be applied to synthesize PILs with systematically-varied structures. These PILs will be employed in nanoscale and macroscale tribological experiments to test the working hypothesis. The project outcomes will inform the design of novel ILs with improved and task-specific tribological properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过改善摩擦,磨损和润滑性能,对工程系统和功能材料的需求不断增长,并且寿命更长,也称为摩擦学性能。这种需求是由经济和社会需求驱动的,例如最大程度地减少温室气体排放,确保能源安全以及改善工业产出和竞争力。离子液体(ILS)是熔融盐,可调节成分和低于100ºC的熔点。它们的物理和化学特性使它们承诺润滑液体。然而,共同IL的高成本和腐蚀性以及对IL分子结构和润滑性能之间关系的不良理解的不足,在摩擦学应用中大规模利用IL。一类称为胆碱氨基酸PIL的低成本,环保的,非腐蚀性的原始离子液体(PILS)已成为这些常见IL的一种替代品。该项目试图了解PIL分子结构如何影响其在固体滑动界面上的排列和反应。该项目还将利用德克萨斯大学 - 奥斯汀大学(UT-AUSTIN)和罗切斯特技术研究院(RIT)的全部专业知识和资源来增强美国工程劳动力的质量,规模,大小和多样性,通过培训和教育的机会,通过研究和研究生级别的chnecrine consects consects Project in sorm nor nor cons nor nor sorm surec.无卤素,环保的PIL及其功能性能(即纳米级和宏观润滑行为)。该研究还将研究如何从固体/PILS界面的界面过程中出现功能行为,以响应空间限制和施加正常压力和剪切力。工作假设是多个界面过程,包括表面吸附,界面相变和剪切诱导的机械化学反应,这是胆碱氨基酸PIL的承诺润滑特性的基础。另外,可以通过调整离子的分子结构(例如烷基链的长度)来控制这些过程的动力学。该团队的完全专业知识和仪器将用于具有系统变化的结构的合成PIL。这些PIL将用于纳米级和宏观摩擦式摩擦学实验,以检验工作假设。该项目的结果将通过改进和特定于任务的摩擦学特性为新颖的IL设计提供信息。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Iglesias其他文献

Membrane-Disrupting Nanofibrous Peptide Hydrogels.
膜破坏纳米纤维肽水凝胶。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    B. Sarkar;Z. Siddiqui;Peter K Nguyen;Namita Dube;Wanyi Fu;Steven Park;Shivani Jaisinghani;Reshma Paul;Stephen D. Kozuch;Daiyong Deng;Patricia Iglesias;Mengyan Li;David Sabatino;D. Perlin;Wen Zhang;Jagannath Mondal;Vivek A. Kumar
  • 通讯作者:
    Vivek A. Kumar
In vivo Neuroprotective Effect of a Self-assembled Peptide Hydrogel.
自组装肽水凝胶的体内神经保护作用。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    B. Sarkar;Xiaotang Ma;Agnieszka Agas;Z. Siddiqui;Patricia Iglesias;Peter K Nguyen;KaKyung Kim;J. Haorah;Vivek A. Kumar
  • 通讯作者:
    Vivek A. Kumar
IDP-410: a Novel Therapeutic Peptide that Alters N-MYC Stability and Reduces Angiogenesis and Tumor Progression in Glioblastomas
IDP-410:一种新型治疗肽,可改变胶质母细胞瘤中的 N-MYC 稳定性并减少血管生成和肿瘤进展
  • DOI:
    10.1007/s13311-021-01176-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    R. Gargini;Berta Segura;María Garranzo‐Asensio;R. Hortigüela;Patricia Iglesias;Daniel Lobato;Miguel Moreno;Santiago Esteban;J. Sepúlveda;Laura Nevola;P. Sánchez
  • 通讯作者:
    P. Sánchez

Patricia Iglesias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了