CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms

CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法

基本信息

  • 批准号:
    1755960
  • 负责人:
  • 金额:
    $ 17.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

The problem of learning hidden structures in network data arises in many contemporary applications such as recommender systems, network privacy, and genomics. This problem intersects high-dimensional statistical inference and large-scale network analysis. On the one hand, classical statistical paradigm focuses on optimal statistical performance of learning algorithms, while it neglects computational complexity that becomes increasingly critical as network data gets big. On the other hand, computer scientists mostly focus on computationally efficient approximation algorithms for worst-case instances, while they neglect the underlying statistical structures that can be potentially exploited to improve the algorithm performance. This research combines both statistical and computational perspectives to characterize fundamental performance limits and develop efficient optimal algorithms for learning hidden structures in networks. This research has two interrelated thrusts: graphon estimation and graph matching. Graphon estimation learns the underlying generating mechanism of a network from a single snapshot of the network. Graph matching matches the vertex sets of two graphs with correlated edges to minimize the number of adjacency disagreements. This research involves: (1) developing efficient algorithms for graphon estimation and graph matching by exploiting insights from spectral graph theory, convex relaxations, and statistical physics; (2) deriving sharp statistical performance limits by drawing tools from information theory, convex duality theory, and random matrix theory; (3) identifying fundamental computational barriers which limit computationally efficient procedures from attaining the optimal statistical performance. The investigator also deploys the algorithms developed in this research to real network data, leading to fast and accurate algorithms for preference elicitation in recommender systems, de-anonymization in social networks, and DNA assembly in genomics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多当代应用程序(例如推荐系统,网络隐私和基因组学)等许多当代应用中,学习隐藏结构的问题。该问题与高维统计推断和大规模网络分析相交。一方面,经典的统计范式着重于学习算法的最佳统计性能,而它忽略了随着网络数据的大量大规模的计算复杂性,该计算复杂性变得越来越重要。另一方面,计算机科学家主要专注于最坏情况下的计算有效近似算法,而他们忽略了可以利用的基本统计结构来提高算法性能。这项研究结合了统计和计算观点,以表征基本性能限制,并开发有效的最佳算法来学习网络中的隐藏结构。这项研究具有两个相互关联的推力:图形估计和图形匹配。 Graphon估计从网络的单个快照中学习网络的基本生成机制。图形匹配与两个图形的顶点集匹配具有相关边缘的两个图形集,以最大程度地减少邻接分歧的数量。这项研究涉及:(1)通过利用光谱图理论,凸出松弛和统计物理学来开发用于图形估计和图形匹配的有效算法; (2)通过从信息理论,凸双重性理论和随机矩阵理论中绘制工具来得出尖锐的统计绩效限制; (3)识别基本计算障碍,该计算障碍将计算有效程序限制在达到最佳统计绩效。研究者还将这项研究中开发的算法部署到真实的网络数据中,从而导致快速准确的算法,以促进推荐系统的偏好,社交网络中的匿名化以及基因组学中的DNA组装。该奖项反映了NSF的法定任务,并通过使用基金会的智能效果和广泛的crakia和广泛的评估来进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiaming Xu其他文献

Mechanical Design and Affective Interaction of Bionic Robot Head
仿生机器人头部的机械设计与情感交互
  • DOI:
    10.1166/asl.2011.1297
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lun Xie;Zhiliang Wang;Jiaming Xu
  • 通讯作者:
    Jiaming Xu
Jointly clustering rows and columns of binary matrices: algorithms and trade-offs
对二元矩阵的行和列进行联合聚类:算法和权衡
  • DOI:
    10.1145/2591971.2592005
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaming Xu;Rui Wu;Kai Zhu;B. Hajek;R. Srikant;Lei Ying
  • 通讯作者:
    Lei Ying
Deduction of CDC42EP3 suppress development and progression of osteosarcoma.
CDC42EP3的扣除可抑制骨肉瘤的发生和进展。
  • DOI:
    10.1016/j.yexcr.2022.113018
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    P. Xu;Xiaoxi Li;Chao Tang;Tao Wang;Jiaming Xu
  • 通讯作者:
    Jiaming Xu
Achieving exact cluster recovery threshold via semidefinite programming under the stochastic block model
随机块模型下通过半定规划实现精确的簇恢复阈值
Collaboratively Learning Preferences from Ordinal Data
从序数数据中协作学习偏好

Jiaming Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiaming Xu', 18)}}的其他基金

CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
  • 批准号:
    2144593
  • 财政年份:
    2022
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Learning in Networks: Performance Limits and Algorithms
CIF:媒介:协作研究:网络学习:性能限制和算法
  • 批准号:
    1856424
  • 财政年份:
    2019
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
  • 批准号:
    1838124
  • 财政年份:
    2018
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
  • 批准号:
    1850743
  • 财政年份:
    2018
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
  • 批准号:
    1932630
  • 财政年份:
    2018
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
  • 批准号:
    2246058
  • 财政年份:
    2023
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
  • 批准号:
    2243355
  • 财政年份:
    2022
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: CIF: Automated and Robust Image Watermarking: A Deep Learning Approach
CRII:CIF:自动且鲁棒的图像水印:一种深度学习方法
  • 批准号:
    2104267
  • 财政年份:
    2021
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: CIF: Machine Learning Based Equalization Towards Multitrack Synchronization and Detection in Two-Dimensional Magnetic Recording
CRII:CIF:基于机器学习的均衡,实现二维磁记录中的多轨同步和检测
  • 批准号:
    2105092
  • 财政年份:
    2021
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
  • 批准号:
    1948159
  • 财政年份:
    2020
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了