CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
基本信息
- 批准号:1948159
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modeling optimization problems under uncertainty is known as stochastic programming (SP). It has a variety of important applications, including disaster management, supply chain design, health care, and harvest planning. Most real-world problems are complicated enough to generate a very large-size SP model, which is difficult to solve. Quickly finding the optimal solutions of these models is critical for decision-making when facing uncertainties. Existing optimization algorithms have a limited capability of solving large-scale SP problems. Without being explicitly programmed, machine learning can give computers the ability to "learn" with data by using statistical techniques. The goal of this project is to create a machine learning-based computational framework to solve large-scale stochastic programming problems effectively and efficiently by integrating machine learning techniques into optimization algorithms. The project will broaden the scope and applicability of machine learning in operations research. Furthermore, this research will support the cross-disciplinary training of graduate and undergraduate students in engineering and computer sciences, as well as the development of new curricula in the interface of machine learning and optimization algorithms.The project will be the pioneering study of applying machine learning into stochastic programming, while existing works usually focus on using stochastic programming to improve the efficiency of machine learning algorithms. Motivated by the challenges from practices and limitations of current optimization algorithms, two research objectives are proposed: efficient sample generation and convergence acceleration, by taking sample average approximation and L-shaped algorithm as examples. The first research objective is to design a semi-supervised learning algorithm based on solution information to efficiently generate samples for sample average approximation. The second research objective is to develop a supervised learning algorithm to estimate a tight upper bound for expediting convergence of L-shaped method. The two research objectives will be achieved through five tasks: (1) semi-supervised learning-based scenario grouping; (2) supervised learning based representative scenario selection; (3) performance analysis for sample generation; (4) supervised learning based upper bound prediction; and (5) performance analysis for the machine learning-based L-shaped method. The successes of this project will generate a new class of theoretical optimization methods that facilitate various real-world applications in disaster management, supply chain design, health care and harvest planning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在不确定性下建模优化问题称为随机编程(SP)。它具有多种重要应用,包括灾难管理,供应链设计,医疗保健和收获计划。大多数现实世界中的问题都足够复杂,可以产生非常大的SP模型,这很难解决。在面对不确定性时,很快找到这些模型的最佳解决方案对于决策至关重要。现有的优化算法能够解决大规模SP问题的能力。机器学习无明确编程,可以使计算机使用统计技术“学习”数据。该项目的目的是创建一个基于机器学习的计算框架,以通过将机器学习技术集成到优化算法中,从而有效,有效地解决大规模的随机编程问题。该项目将扩大机器学习在操作研究中的范围和适用性。此外,这项研究将支持对工程和计算机科学领域的毕业生和本科生的跨学科培训,以及在机器学习和优化算法的界面中开发新课程的开发。该项目将是将机器学习应用于随机计划的开创性研究,而现有的现有工作则集中在现有的工作中,以提高机器的效果,以提高机器的效果。由实践和当前优化算法的局限性挑战所激发的挑战,提出了两个研究目标:通过采用样品平均近似值和L形算法作为示例,提出了有效的样本产生和收敛加速度。第一个研究目标是基于解决方案信息设计半监督学习算法,以有效地生成样品以进行样品平均近似值。第二个研究目标是开发一种有监督的学习算法,以估算加快L形方法收敛的紧密上限。这两个研究目标将通过五个任务实现:(1)半监督的基于学习的方案分组; (2)基于监督学习的代表性场景选择; (3)样本生成的绩效分析; (4)基于监督学习的上限预测; (5)基于机器学习的L形方法的性能分析。该项目的成功将产生一类新的理论优化方法,以促进灾难管理,供应链设计,医疗保健和收获计划中的各种现实应用程序。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Effect of Clustering Algorithms on Sample Average Approximation
探索聚类算法对样本平均近似的影响
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jacobson, Daniel;Hassan, Menna;Dong, Zhijie S.
- 通讯作者:Dong, Zhijie S.
Supplier selection in disaster operations management: Review and research gap identification
- DOI:10.1016/j.seps.2022.101302
- 发表时间:2022-04
- 期刊:
- 影响因子:6.1
- 作者:Shaolong Hu;Z. Dong;B. Lev
- 通讯作者:Shaolong Hu;Z. Dong;B. Lev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhijie Dong其他文献
Super-resolution ultrasound imaging of cerebrovascular impairment in a mouse model of Alzheimer’s disease
阿尔茨海默病小鼠模型脑血管损伤的超分辨率超声成像
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew R. Lowerison;N. V. Chandra Sekaran;Zhijie Dong;Xi Chen;Qi You;D. Llano;Peng Song - 通讯作者:
Peng Song
Effect of curvature radius on the oxidation protective ability of HfB<sub>2</sub>-SiC-MoSi<sub>2</sub>-Si/SiC-Si coating for C/C composites
- DOI:
10.1016/j.surfcoat.2024.131125 - 发表时间:
2024-08-15 - 期刊:
- 影响因子:
- 作者:
Shubo Zhang;Qiangang Fu;Zhijie Dong;Zhiqiang Liu;Hongkang Ou;Xiaoxuan Su - 通讯作者:
Xiaoxuan Su
Towards a real-time continuous ultrafast ultrasound beamformer with programmable logic
迈向具有可编程逻辑的实时连续超快超声波束形成器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhengchang Kou;Qi You;Jihun Kim;Zhijie Dong;Matthew R. Lowerison;N. C. Sekaran;D. Llano;Peng Song;M. Oelze - 通讯作者:
M. Oelze
miR-106a mimics the nuclear factor-κB signalling pathway by targeting DR6 in rats with osteoarthritis
miR-106a 通过靶向骨关节炎大鼠中的 DR6 来模拟核因子-κB 信号通路
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
L. Cui;Yong Han;Zhijie Dong - 通讯作者:
Zhijie Dong
Convolution algebra of diagram automorphism fixed quiver variety
图自同构固定箭簇的卷积代数
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhijie Dong;Haitao Ma - 通讯作者:
Haitao Ma
Zhijie Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhijie Dong', 18)}}的其他基金
I-Corps: Social Media Misinformation Interactive Dashboard
I-Corps:社交媒体错误信息交互式仪表板
- 批准号:
2223343 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
- 批准号:
2243355 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
I-Corps: Social Media Misinformation Interactive Dashboard
I-Corps:社交媒体错误信息交互式仪表板
- 批准号:
2309846 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant