CIF: Medium: Collaborative Research: Learning in Networks: Performance Limits and Algorithms
CIF:媒介:协作研究:网络学习:性能限制和算法
基本信息
- 批准号:1856424
- 负责人:
- 金额:$ 43.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many machine learning problems deal with networks that encode similarities or relationships among different objects, for which observational data may be limited in extent and noisy. Learning the desired information requires highly efficient algorithms that can process large-scale network data and detect tenuous statistical signatures. This project involves modeling large-scale networks and observations, devising learning algorithms, analyzing the performance of the algorithms, deriving bounds on the possible performance of best algorithms, and deploying theoretically-grounded algorithms to real network data. The research aims to significantly advance the theoretical and algorithmic understanding of graphical inference and provide key enabling technologies for high-impact applications such as ordering of short DNA sub-sequences for genetic sequencing. Improvements in the ability to sequence DNA can accelerate the use of genomics with applications in health care. The associated mechanisms for broadening participation in computing include: (a) Explorations in computing and statistics for K-12 with broad participation; (b) Career and life skills guidance for graduate students at the Annual Allerton Conference on Communications, Control, and Computing; and (c) Mentoring female and minority students in research.The research is grouped into four interrelated areas, ranging from inference problems for single graphs, to inference involving two graphs, in order to study classification of graphs from general families: (a) learning community structure in dynamic graphs with heavy-tailed degree distribution, specifically, in a new variation of the Barabasi-Albert preferential attachment model; (b) recovering graphical structures beyond communities, including but not limited to recovery of hidden Hamiltonian cycles arising in a genetic sequencing problem and hidden matchings in bipartite graphs arising in a particle tracking problem; (c) matching two graphs to each other by identifying vertex correspondences, in particular, matching of perturbed versions of Erdos-Renyi random graphs and Barabasi-Albert preferential attachment graphs; and (d) learning properties of graphs using sampling, including sampling along random walks on graphs. Computationally efficient algorithms that estimate the number of both local structures (e.g., edges and triangles) and global structures are designed. Network dynamics and subsampling, as well as inference of network structures that are not necessarily low rank or static, are addressed by employing techniques ranging from information theory, message passing, spectral and non-convex methods, and convex methods including linear, quadratic, and semi-definite relaxations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多机器学习问题涉及编码不同对象之间相似性或关系的网络,而观察数据的程度和嘈杂性可能会受到限制。 学习所需的信息需要高效的算法,这些算法可以处理大规模网络数据并检测差的统计签名。 该项目涉及建模大规模网络和观察结果,设计学习算法,分析算法的性能,得出最佳算法可能性能的界限,并将理论上的算法部署到真实的网络数据中。 该研究旨在显着提高对图形推断的理论和算法理解,并为高影响应用程序提供关键的促成技术,例如为遗传测序的短DNA子序列排序。对DNA测序能力的提高可以加速基因组学在医疗保健中的应用。扩大计算参与的相关机制包括:(a)K-12的计算和统计探索,并广泛参与; (b)在年度Allerton通信,控制和计算会议上,研究生的职业和生活技能指导; (c)指导女性和少数族裔学生研究。该研究分为四个相互关联的领域,从单个图的推理问题到涉及两个图的推理,以便研究一般家庭的图形分类:(a)学习社区结构在动态图中的学习界结构,具有重型尾巴分配,尤其是重型范围的barabasi-allabasi-eactential prefental eactentials prefential prefental prefental prefential prefential prefential prefential prefential prefential prefential prefential prefentials prefentials prefental alberbert offient alberberbert; (b)恢复社区以外的图形结构,包括但不限于在遗传测序问题和在粒子跟踪问题中产生的两分图中产生的隐藏的哈密顿周期的恢复; (c)通过识别顶点对应关系,尤其是匹配ERDOS-RENYI随机图和Barabasi-Albert优先附件图的扰动版本的匹配,将两个图相匹配; (d)使用采样的图形学习属性,包括沿图上的随机步行进行采样。设计了估计局部结构数量(例如边缘和三角形)和全局结构的计算有效算法。 网络动力学和子采样以及不一定低等级或静态的网络结构的推理,可以通过采用从信息理论,信息传播,光谱和非凸方法的技术以及凸的方法以及线性,四次,典型和半定义的奖励来通过评估NSF的宣传奖,以表现出nsf的宣传,以表现出nsf的宣传,以表现出nsf的范围,以表现出nsf的范围,以表现出nsf的范围。和更广泛的影响审查标准。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The planted matching problem: sharp threshold and infinite-order phase transition
种植匹配问题:尖锐阈值和无限阶相变
- DOI:10.1007/s00440-023-01208-6
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Ding, Jian;Wu, Yihong;Xu, Jiaming;Yang, Dana
- 通讯作者:Yang, Dana
The Power of D-hops in Matching Power-Law Graphs
- DOI:10.1145/3460094
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:LIREN YU;Jiaming Xu;Xiaojun Lin
- 通讯作者:LIREN YU;Jiaming Xu;Xiaojun Lin
Spectral Graph Matching and Regularized Quadratic Relaxations I Algorithm and Gaussian Analysis
- DOI:10.1007/s10208-022-09570-y
- 发表时间:2022-06
- 期刊:
- 影响因子:3
- 作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
- 通讯作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
Random Graph Matching at Otter’s Threshold via Counting Chandeliers
通过计数枝形吊灯在水獭阈值上进行随机图匹配
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mao, Cheng;Wu, Yihong;Xu, Jiaming;Yu, Sophie H.
- 通讯作者:Yu, Sophie H.
Consistent recovery threshold of hidden nearest neighbor graphs
隐藏最近邻图的一致恢复阈值
- DOI:10.1109/tit.2021.3085773
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Ding, Jian;Wu, Yihong;Xu, Jiaming;Yang, Dana
- 通讯作者:Yang, Dana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiaming Xu其他文献
Achieving exact cluster recovery threshold via semidefinite programming under the stochastic block model
随机块模型下通过半定规划实现精确的簇恢复阈值
- DOI:
10.1109/acssc.2015.7421303 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yihong Wu;Jiaming Xu;B. Hajek - 通讯作者:
B. Hajek
Deduction of CDC42EP3 suppress development and progression of osteosarcoma.
CDC42EP3的扣除可抑制骨肉瘤的发生和进展。
- DOI:
10.1016/j.yexcr.2022.113018 - 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
P. Xu;Xiaoxi Li;Chao Tang;Tao Wang;Jiaming Xu - 通讯作者:
Jiaming Xu
Jointly clustering rows and columns of binary matrices: algorithms and trade-offs
对二元矩阵的行和列进行联合聚类:算法和权衡
- DOI:
10.1145/2591971.2592005 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jiaming Xu;Rui Wu;Kai Zhu;B. Hajek;R. Srikant;Lei Ying - 通讯作者:
Lei Ying
Mechanical Design and Affective Interaction of Bionic Robot Head
仿生机器人头部的机械设计与情感交互
- DOI:
10.1166/asl.2011.1297 - 发表时间:
2011-04 - 期刊:
- 影响因子:0
- 作者:
Lun Xie;Zhiliang Wang;Jiaming Xu - 通讯作者:
Jiaming Xu
Collaboratively Learning Preferences from Ordinal Data
从序数数据中协作学习偏好
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sewoong Oh;K. K. Thekumparampil;Jiaming Xu - 通讯作者:
Jiaming Xu
Jiaming Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiaming Xu', 18)}}的其他基金
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
- 批准号:
1838124 - 财政年份:2018
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1755960 - 财政年份:2018
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1850743 - 财政年份:2018
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits
大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限
- 批准号:
1932630 - 财政年份:2018
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant