CRII: AF: Linear-Algebraic Pseudorandomness
CRII:AF:线性代数伪随机性
基本信息
- 批准号:1755921
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Error-resilient communication lies at the backbone of modern computer networks and storage systems. Such schemes have the property of being pseudorandom in that they are explicitly constructed without randomness (which can be important, such as for efficient decoding), and yet (almost) share the error-resilience afforded by truly-random communication protocols. The construction and analysis of such schemes often uses linear algebra, and recently it has been shown that one can improve such schemes (in particular, list-decodable codes) by constructing certain pseudorandom linear-algebraic objects. Such linear-algebraic pseudorandom notions have turned out to be interesting independent of their coding-theoretic applications, as they mirror many well-studied notions in statistical (min-entropy) pseudorandomness, have applications to improving the time- and randomness-efficiency of linear-algebraic algorithms, and have connections to the polynomial method in mathematics. This research will study the foundations of linear-algebraic pseudorandomness by attacking its main open problems, strengthening known connections, and discovering new connections. This project also has a broader impact through course design, organization of workshops, and training of undergraduate and graduate students.This project has two main focuses. The first is on explicit constructions of linear-algebraic pseudorandom objects. In particular, this project studies rank extractors (a small collection of dimension-reducing linear maps that will preserve the dimension of a linear space on average), subspace-evasive sets (a large set which has small intersections with any small-dimensional linear space), and dimension expanders (a small collection of linear maps which increase the dimension of any small-dimensional linear space). While rank extractors and dimension expanders now have good constructions known, they lack optimality in several parameter regimes, and this project seeks to close these gaps, for example by tightening current analyses. In contrast, all known explicit constructions of subspace-evasive sets are far from optimal, and this project seeks new avenues of construction. Further, the project will explore the many relationships of these objects, such as with recent work on two-source (min-entropy) extractors, and known applications of expander graphs.The second focus on this project is on the polynomial method, a method in mathematics which has yielded dramatic solutions to problems in combinatorics and number theory. It turns out that the linear-algebraic tools used in the analysis of the above pseudorandom objects has a natural phrasing in the language of the polynomial method. This project will sharpen these linear-algebraic tools to obtain new results via the polynomial method.
错误的通信位于现代计算机网络和存储系统的骨干上。这样的方案具有伪随机的属性,因为它们是在没有随机性的情况下明确构造的(这可能很重要,例如对于有效的解码),并且(几乎)共享由真正的随机通信协议提供的错误弹性。此类方案的构建和分析通常使用线性代数,最近已经表明,可以通过构造某些伪和线性的代码对象来改善此类方案(尤其是可列表对代码)。 Such linear-algebraic pseudorandom notions have turned out to be interesting independent of their coding-theoretic applications, as they mirror many well-studied notes in statistical (min-entropy) pseudorandomness, have applications to improve the time- and randomness-efficiency of linear-algebraic algorithms, and have connections to the polynomial method in mathematics.这项研究将通过攻击其主要的开放问题,加强已知的联系并发现新的联系,研究线性 - 地球化伪随机的基础。该项目还通过课程设计,研讨会的组织以及对本科和研究生的培训产生了更大的影响。该项目有两个主要重点。首先是在线性偏格伪界对象的显式结构上。 In particular, this project studies rank extractors (a small collection of dimension-reducing linear maps that will preserve the dimension of a linear space on average), subspace-evasive sets (a large set which has small intersections with any small-dimensional linear space), and dimension expanders (a small collection of linear maps which increase the dimension of any small-dimensional linear space).尽管等级提取器和维度扩展器现在已经知道了良好的结构,但相比之下,它们缺乏最佳性,但所有已知的显式构造构造远非最佳,并且该项目寻求新的构建途径。此外,该项目将探索这些对象的许多关系,例如最近在两种源(最小内侧)提取器上的工作以及扩展器图的已知应用。该项目的第二个重点是多项式方法,这是一种数学方法,这是对组合术和数字理论中问题的戏剧化解决方案。事实证明,用于分析上述伪随机对象的线性代数工具具有多项式方法语言的自然措辞。该项目将锐化这些线性地球工具,以通过多项式方法获得新的结果。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial Isolation Implies Zero Knowledge Even in a Quantum World
即使在量子世界中,空间隔离也意味着零知识
- DOI:10.1109/focs.2018.00077
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chiesa, Alessandro;Forbes, Michael A.;Gur, Tom;Spooner, Nicholas
- 通讯作者:Spooner, Nicholas
Algebraic Hardness Versus Randomness in Low Characteristic
低特性中的代数硬度与随机性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Andrews, Robert
- 通讯作者:Andrews, Robert
Random Restrictions and PRGs for PTFs in Gaussian Space
高斯空间中 PTF 的随机限制和 PRG
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kelley, Zander;Meka, Raghu
- 通讯作者:Meka, Raghu
An improved derandomization of the switching lemma
改进的切换引理去随机化
- DOI:10.1145/3406325.3451054
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kelley, Zander
- 通讯作者:Kelley, Zander
Towards blackbox identity testing of log-variate circuits
- DOI:10.4230/lipics.icalp.2018.54
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Michael A. Forbes;Sumanta K Ghosh;Nitin Saxena
- 通讯作者:Michael A. Forbes;Sumanta K Ghosh;Nitin Saxena
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Forbes其他文献
Benders Decomposition with Delayed Disaggregation for the Active Passive Vehicle Routing Problem
主动被动车辆路径问题的延迟分解 Benders 分解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Yannik Rist;Christian Tilk;Michael Forbes - 通讯作者:
Michael Forbes
Pupil-sparing third nerve palsies and hemiataxia: Claude’s and reverse Claude’s syndrome
- DOI:
10.1016/j.jocn.2015.12.010 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
James R. Bateman;Pavan Murty;Michael Forbes;Kisha Young Collier;Danoushka Tememe;Octavio de Marchena;William J. Powers - 通讯作者:
William J. Powers
Augmentation of CFTR maturation by S-nitrosoglutathione reductase 1 2
S-亚硝基谷胱甘肽还原酶促进 CFTR 成熟 1 2
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Zaman;Victoria Sawczak;Atiya Zaidi;Maya Butler;Deric Bennett;Paulina;Getsy;Maryam Zeinomar;Zivi Greenberg;Michael Forbes;Shagufta Rehman;Vinod;Jyothikumar;Kimberly Deronde;A. Sattar;Laura A. Smith;Deborah A. Corey;Adam;Straub;F. Sun;L. Palmer;A. Periasamy;S. Randell;T. Kelley;S. Lewis;B. Gaston - 通讯作者:
B. Gaston
IN GOLF PUTTING Examining visual and attentional focus influences on golf putting performance using a dual-task paradigm
在高尔夫推杆中使用双任务范例检查视觉和注意力焦点对高尔夫推杆表现的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Michael Forbes - 通讯作者:
Michael Forbes
Michael Forbes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Forbes', 18)}}的其他基金
Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
- 批准号:
2309322 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
- 批准号:
2047310 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Quantum Simulation of Turbulence with Cold Atoms
冷原子湍流的量子模拟
- 批准号:
2012190 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
AF: Small: Challenges in Unconditional Pseudorandomness for Boolean Computation
AF:小:布尔计算无条件伪随机性的挑战
- 批准号:
1814788 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
- 批准号:32372727
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
- 批准号:82304160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
- 批准号:82303789
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
- 批准号:
1763481 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1814041 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
AF: Small: Data Stream Algorithms with Application to Linear Algebra
AF:小:数据流算法及其在线性代数中的应用
- 批准号:
1815840 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1813374 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant