Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
基本信息
- 批准号:232171657
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We consider the combination of uncertain information given as probability density functions (pdfs). The information typically arises from autonomous estimators that are connected by a communication network and provide their inferences about the environment.Information processing is done in a decentralized fashion by propagating local estimates through the network and performing local fusion. Global information about the dependencies between the estimates is not or only approximately maintained in order to keep computation, communication, and storage tractable. Uncertainty in observations and states is characterized by probability density functions, where for practical purposes, finite-dimensional parameterizations are employed. More specifically, we primarily focus on Gaussian mixtures and Dirac mixtures.For systematically fusing local estimates, it is necessary to consider their common information, which has been deliberately (partially) discarded for the reasons stated above. As a result, it is not possible to make a distinction between new information and information already used, which leads to overconfident estimates when the dependencies are neglected. In order to avoid this so called "data incest" problem, i.e., double-counting the same data, the fused estimate must be at least as uncertain as the true estimate. This property of conservativeness of the pdf for describing the fused estimate is called "consistency" in the remainder. Although procedures for guaranteeing consistency for Gaussian densities in the context of linear systems are well-known, these concepts cannot be transferred to arbitrary densities as they appear in nonlinear information processing.Several difficult and fundamental challenges have been identified as the basis for this proposal: First of all, consistency of fusion results in the form of pdfs has to be properly defined also for recursive processing. Procedures for local fusion then have to be developed that consider the unknown dependencies between local estimates in order to provide consistent results. In summary, we propose a framework of fusion algorithms for arbitrary densities that provides consistent estimates. These algorithms will differ in their way of incorporating dependency information, in their accuracy, and in their computational effort. This will hopefully result in further progress towards tractable estimation methods for large problems with guaranteed estimation quality.
我们将给出的不确定信息的组合视为概率密度函数(PDFS)。信息通常来自通过通信网络连接并提供其对环境的推断的自主估计器。信息处理是通过通过网络传播本地估计并执行本地融合来以分散的方式完成的。有关估计值之间依赖关系的全局信息不是或仅是近似维护的,以保持计算,通信和存储。观测和状态的不确定性以概率密度函数为特征,在实际目的中,采用有限维参数化。更具体地说,我们主要关注高斯混合物和狄拉克混合物。对于系统地融合本地估计,有必要考虑其常见信息,由于上述原因,该信息已故意(部分)被丢弃。结果,不可能区分已经使用的新信息和信息,从而导致估计依赖性时过度自信的估计。为了避免这种所谓的“数据乱伦”问题,即对相同的数据进行双重计数,融合估计值必须至少与真实估计值一样不确定。 PDF保守性描述融合估计的财产在其余部分被称为“一致性”。尽管在线性系统的背景下保证高斯密度一致性的程序是众所周知的,但是这些概念不能在非线性信息处理中出现的任意密度转移到任意密度。几乎存在困难和基本挑战已被确定为该建议的基础:首先,融合的一致性也必须适当定义用于递归处理的PDF形式。然后必须开发局部融合的程序,以考虑本地估计之间的未知依赖性,以提供一致的结果。总之,我们为任意密度的融合算法框架提出了提供一致估计的任意密度。这些算法在整合依赖信息,准确性和计算工作的方式上会有所不同。希望这将导致进一步的进展,以解决可估算质量的大型问题的可进行估算方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstruction of joint covariances in networked linear systems
网络线性系统中联合协方差的重建
- DOI:10.1109/ciss.2014.6814071
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Marc Reinhardt;Benjamin Noack;Uwe D. Hanebeck
- 通讯作者:Uwe D. Hanebeck
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Uwe D. Hanebeck其他文献
Professor Dr.-Ing. Uwe D. Hanebeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金
CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
- 批准号:
432191479 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
- 批准号:
349395379 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Recursive Estimation of Rigid Body Motions
刚体运动的递归估计
- 批准号:
325035548 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
- 批准号:
315021670 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Cooperative Approaches to Design of Nonlinear Filters
非线性滤波器设计的协作方法
- 批准号:
283072193 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
- 批准号:
267437392 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
- 批准号:
234520279 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
- 批准号:
173876058 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
- 批准号:
58242181 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Integrierte nichtlineare modell-prädiktive Regelung und Schätzung unter umfassender Berücksichtigung stochastischer Unsicherheiten
综合考虑随机不确定性的集成非线性模型预测控制和估计
- 批准号:
75650505 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于网络化云边融合的多移动机器人协作数据驱动控制方法研究
- 批准号:62103138
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合过程特性的柔性事件触发网络化系统故障检测
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
分布式多源传感耦合的动态网络化系统状态估计研究
- 批准号:61903172
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
融合通信参数的多变量网络化系统分析与设计
- 批准号:61971181
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
基于网络事件触发Markov跳变系统的异步融合估计
- 批准号:61903128
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
UHDNetCity: User-centered Heterogeneous Data Fusion for Multi-networked City Mobility
UHDNetCity:以用户为中心的异构数据融合,实现多网络城市移动性
- 批准号:
1640587 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Development of human harmonized information communication infrastructure based on networked based AR technologies
基于网络AR技术的人类协调信息通信基础设施的开发
- 批准号:
24300022 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integration of cooperative mobile robots and networked sensor fusion in Safety/Security-Critical tasks
在安全/安全关键任务中集成协作移动机器人和网络传感器融合
- 批准号:
352401-2007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Special Research Opportunity Program - Project
Integration of cooperative mobile robots and networked sensor fusion in Safety/Security-Critical tasks
在安全/安全关键任务中集成协作移动机器人和网络传感器融合
- 批准号:
352401-2007 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Special Research Opportunity Program - Project
Integration of cooperative mobile robots and networked sensor fusion in Safety/Security-Critical tasks
在安全/安全关键任务中集成协作移动机器人和网络传感器融合
- 批准号:
352401-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Special Research Opportunity Program - Project