Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds

主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪

基本信息

项目摘要

Tracking the pose of quickly moving extended 3D-objects based on noisy point cloud measurements from the surface of the object is an important problem in several applications. These include automobile safety, innovative control for entertainment devices, telepresence applications, and industrial production lines.Measurements are acquired by sensors such as laser scanners, depth cameras, multi-camera setups, or radar devices. In general, due to occlusion effects, only certain parts of the object are visible at a given time step. In addition, depending on where the object is located relative to the sensor, the number of measurements and their quality strongly varies. In order to accurately estimate the pose, several measurements of the object have to be sequentially collected over time while the object is in motion. Tracking the pose also requires the continuous determination of its shape, even if the shape of the target object is not the primary interest, in order to combine information from different perspectives. For shape modeling, the well-established concept of Random Hypersurface Models (RHMs) and Active Contours will be combined, resulting in the ARHMs. This will form the basis of a Bayesian tracking algorithm, which recursively estimates the shape and pose of an object simultaneously. Using RHMs, noisy measurements are related to the object parameters using explicit measurement equations with multiplicative noise. The key idea is to describe the object by applying transformations on a base shape according to a probability distribution. For example, a cylinder can be described as a circular base shape being transformed by an extrusion. This model allows information to be extracted from measurements of a point cloud without knowing where the exact source points were generated. The main research contribution of the proposal is the extension of RHMs to three-dimensional objects. This consists of the development of three new types of RHMs, which can be combined to describe more complex objects, as well as articulated structures. The application of symmetries and transformation invariances avoids redundancies in the representation, allowing even complex forms to be described using a small amount of parameters. The parametrized surface, together with regularization constraints, allows modeling of parts that have not been observed. This concept is based on ideas from Active Contours. The non-trivial combination of RHMs and Active Contours will yield an estimation method capable of reliably tracking the pose of extended 3D-objects using a parametrized form, resulting in an efficient model that allows the derivation of estimation procedures in closed form. In addition, we expect our proposed ideas and algorithms to result in a significant contribution to the field of 3D-object tracking, as our approach is based on solid mathematical fundaments, yet will still be intuitive.
基于物体表面的噪声点云测量来跟踪快速移动的扩展 3D 物体的姿态是多个应用中的一个重要问题。其中包括汽车安全、娱乐设备的创新控制、远程呈现应用和工业生产线。测量结果是通过激光扫描仪、深度摄像头、多摄像头设置或雷达设备等传感器获取的。一般来说,由于遮挡效应,在给定的时间步长中只有对象的某些部分可见。此外,根据物体相对于传感器的位置,测量的数量及其质量也会有很大差异。为了准确估计姿态,必须在物体运动时随时间顺序收集物体的多个测量值。跟踪姿势还需要连续确定其形状,即使目标对象的形状不是主要兴趣,以便结合不同视角的信息。对于形状建模,将结合随机超曲面模型 (RHM) 和活动轮廓的成熟概念,形成 ARHM。这将构成贝叶斯跟踪算法的基础,该算法同时递归地估计对象的形状和姿态。使用 RHM,噪声测量通过使用具有乘性噪声的显式测量方程与对象参数相关。关键思想是通过根据概率分布对基本形状应用变换来描述对象。例如,圆柱体可以描述为通过挤压变形的圆形基础形状。该模型允许从点云的测量中提取信息,而无需知道确切的源点是在哪里生成的。该提案的主要研究贡献是将 RHM 扩展到三维物体。这包括开发三种新型 RHM,它们可以组合起来描述更复杂的对象以及铰接结构。对称性和变换不变性的应用避免了表示中的冗余,甚至允许使用少量参数来描述复杂的形式。参数化表面与正则化约束一起允许对尚未观察到的零件进行建模。这个概念基于 Active Contours 的想法。 RHM 和主动轮廓的重要组合将产生一种估计方法,能够使用参数化形式可靠地跟踪扩展 3D 对象的姿态,从而产生一个有效的模型,允许以封闭形式推导估计过程。此外,我们预计我们提出的想法和算法将为 3D 对象跟踪领域做出重大贡献,因为我们的方法基于坚实的数学基础,但仍然是直观的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape tracking using Partial Information Models
使用部分信息模型进行形状跟踪
Tracking extended objects using extrusion Random Hypersurface Models
Level-Set Random Hypersurface Models for Tracking Nonconvex Extended Objects
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Uwe D. Hanebeck其他文献

Professor Dr.-Ing. Uwe D. Hanebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金

CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
  • 批准号:
    432191479
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
  • 批准号:
    349395379
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Recursive Estimation of Rigid Body Motions
刚体运动的递归估计
  • 批准号:
    325035548
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
  • 批准号:
    315021670
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Cooperative Approaches to Design of Nonlinear Filters
非线性滤波器设计的协作方法
  • 批准号:
    283072193
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
  • 批准号:
    267437392
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
  • 批准号:
    232171657
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
  • 批准号:
    173876058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
  • 批准号:
    58242181
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrierte nichtlineare modell-prädiktive Regelung und Schätzung unter umfassender Berücksichtigung stochastischer Unsicherheiten
综合考虑随机不确定性的集成非线性模型预测控制和估计
  • 批准号:
    75650505
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于光子晶体光纤随机光栅阵列的动态准分布式矢量磁场传感研究
  • 批准号:
    62375029
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
  • 批准号:
    52372348
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
随机时变相位低相干宽带激光抑制受激拉曼散射的动理学研究
  • 批准号:
    12305265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机阻尼波动方程的高效保结构算法研究
  • 批准号:
    12301518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
  • 批准号:
    EP/Y028252/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了