BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities

BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算

基本信息

  • 批准号:
    1741279
  • 负责人:
  • 金额:
    $ 27.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The ubiquity of information-sensing devices has opened up abundant sources for Big Sensory Data (BSD), which span over Internet of Things, wireless sensor networks, RFID, cyber physical systems, to name a few. Such diverse BSD-rich systems are the building blocks for smart cities where smart devices are deployed in every corner of a city. The analytical use of BSD is essential to smart cities in managing a city's assets and monitoring air conditions, pollution, climate change, traffic, security and safety, etc. The high demand for smart cities and the pivotal role of sensing devices in smart cities accelerate the explosion of BSD. Unfortunately, the size and dynamic nature of BSD overwhelm current capability to capture, store, search, mine and visualize BSD, and hence have become a major hindrance to the widespread development of smart city applications. To tackle these challenges, this project will investigate fundamental issues regarding acquisition, collection and computation of BSD with principled quality control. The goal is to cost-effectively collect and manage BSD for efficient utilization in smart city applications. A set of foundational principles, algorithms and tools for BSD management will be developed in response to the four challenging characteristics of BSD, which are large scale, correlated dynamics, mode diversity and low quality. The outcomes of this research will contribute to the vision of smart and resilient cities, which broadly impact the nation's emerging smart city infrastructure and citizens' mobile quality of life. This project also offers an opportunity to collaborate with the Government of the District of Columbia on the Smarter DC Initiative, and hence impacts not only the research community but also the society at large. This project aims at tackling major challenges in task-cognizant BSD management at the critical phase of data acquisition, collection and computation. The overarching goal is to alleviate the high computational cost and improve the utilization efficiency of BSD in smart city applications. First, approximate BSD acquisition methods will be developed that automatically adjust the sensing frequency based on the changing trend of the physical world. Such acquisition methods can effectively reduce the data volume at an early stage during periodic and long-term monitoring of smart cities. Second, approximate sampling algorithms, knowledge discovery methods, and integration methods will be developed for task-specific multimodal BSD, in order to reduce the transmission cost associated with delivering otherwise raw and redundant BSD from sensing devices to end users. Finally, new metrics for evaluating BSD quality will be investigated and then applied to properly assess the tolerance of low-quality BSD and provide deep understanding of the fundamental impact of data quality on various design aspects of BSD acquisition, collection and computation. Besides theoretical analysis, simulation and experimental studies will be carried out on real BSD, including experimentation on real-world Smart City projects at Washington DC. The corresponding code, datasets, and educational materials will be released via a dedicated project website.
信息传感设备的普遍存在为大传感数据(BSD)开辟了丰富的来源,其涵盖物联网、无线传感器网络、RFID、网络物理系统等。这种富含 BSD 的多样化系统是智能城市的构建块,智能设备部署在城市的每个角落。 BSD 的分析使用对于智慧城市管理城市资产以及监测空气状况、污染、气候变化、交通、安保和安全等至关重要。对智慧城市的高需求以及传感设备在智慧城市中的关键作用加速BSD 的爆发。不幸的是,BSD 的规模和动态性质压倒了当前捕获、存储、搜索、挖掘和可视化 BSD 的能力,因此成为智慧城市应用广泛发展的主要障碍。为了应对这些挑战,该项目将研究有关 BSD 获取、收集和计算的基本问题,并进行原则性的质量控制。目标是经济高效地收集和管理 BSD,以便在智慧城市应用中高效利用。针对BSD的大规模、动态关联性、模式多样性和低质量这四个具有挑战性的特征,将开发一套BSD管理的基本原则、算法和工具。这项研究的成果将有助于实现智慧和弹性城市的愿景,这将广泛影响国家新兴的智慧城市基础设施和公民的移动生活质量。该项目还提供了与哥伦比亚特区政府合作开展智慧特区计划的机会,因此不仅影响研究界,而且影响整个社会。该项目旨在解决数据采集、收集和计算关键阶段任务认知 BSD 管理的主要挑战。总体目标是缓解智慧城市应用中高昂的计算成本并提高 BSD 的利用效率。首先,将开发近似BSD采集方法,根据物理世界的变化趋势自动调整传感频率。这种采集方式可以有效减少智慧城市定期和长期监测的早期数据量。其次,将为特定任务的多模式 BSD 开发近似采样算法、知识发现方法和集成方法,以降低与从传感设备向最终用户提供原始和冗余 BSD 相关的传输成本。最后,将研究评估 BSD 质量的新指标,然后应用于正确评估低质量 BSD 的容忍度,并深入了解数据质量对 BSD 采集、收集和计算的各个设计方面的根本影响。除了理论分析之外,还将在真实的 BSD 上进行模拟和实验研究,包括在华盛顿特区的真实世界智能城市项目上进行实验。相应的代码、数据集和教材将通过专门的项目网站发布。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A model for integrating heterogeneous sensory data in IoT systems
在物联网系统中集成异构传感数据的模型
  • DOI:
    10.1016/j.comnet.2018.11.032
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Cheng, Siyao;Li, Yingshu;Tian, Zhi;Cheng, Wei;Cheng, Xiuzhen
  • 通讯作者:
    Cheng, Xiuzhen
Sampling Based δ -Approximate Data Aggregation in Sensor Equipped IoT Networks
配备传感器的物联网网络中基于采样的近似数据聚合
  • DOI:
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Ji;Siddula, Madhuri;Cheng, Xiuzhen;Cheng, Wei;Tian, Zhi;Li, Yingshu.
  • 通讯作者:
    Li, Yingshu.
A game theoretic analysis on block withholding attacks using the zero-determinant strategy
采用零行列式策略的扣块攻击博弈论分析
Wide and Recurrent Neural Networks for Detection of False Data Injection in Smart Grids
用于检测智能电网中的虚假数据注入的宽循环神经网络
  • DOI:
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yawei;Chen, Donghui;Zhang, Cheng;Chen, Xi;Huang, Baogui;Cheng, Xiuzhen
  • 通讯作者:
    Cheng, Xiuzhen
Quantum Game Analysis on Extrinsic Incentive Mechanisms for P2P Services
P2P服务外在激励机制的量子博弈分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiuzhen Cheng其他文献

Optimal Rectangular Partitions
最佳矩形分区
  • DOI:
    10.1007/0-387-23830-1_7
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiuzhen Cheng;D. Du;Joon;L. Ruan
  • 通讯作者:
    L. Ruan
A Polynomial Time Approximation Scheme for the Problem of Interconnecting Highways
公路互联互通问题的多项式时间逼近方案
Theoretical Analysis of Secrecy Transmission Capacity in Wireless Ad Hoc Networks
无线自组织网络保密传输能力的理论分析
DataSafe: Copyright Protection with PUF Watermarking and Blockchain Tracking
DataSafe:通过 PUF 水印和区块链跟踪进行版权保护
  • DOI:
    10.48550/arxiv.2405.19099
  • 发表时间:
    2024-05-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolong Xue;Guangyong Shang;Zhen Ma;Minghui Xu;Hechuan Guo;Kun Li;Xiuzhen Cheng
  • 通讯作者:
    Xiuzhen Cheng
On Protecting the Data Privacy of Large Language Models (LLMs): A Survey
关于保护大型语言模型 (LLM) 的数据隐私:一项调查
  • DOI:
    10.48550/arxiv.2403.05156
  • 发表时间:
    2024-03-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Biwei Yan;Kun Li;Minghui Xu;Yueyan Dong;Yue Zhang;Zhaochun Ren;Xiuzhen Cheng
  • 通讯作者:
    Xiuzhen Cheng

Xiuzhen Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiuzhen Cheng', 18)}}的其他基金

Collaborative Research: Multi-Input Multi-Output (MIMO) Aware Cooperative Dynamic Spectrum Access
协作研究:多输入多输出(MIMO)感知协作动态频谱接入
  • 批准号:
    1443858
  • 财政年份:
    2015
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Economically-Robust and Secure Auctions for Heterogeneous Secondary Spectrum Market
异构二级频谱市场经济稳健且安全的拍卖
  • 批准号:
    1407986
  • 财政年份:
    2014
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
CyberSEES: Type 2: Collaborative Research: Tenable Power Distribution Networks
Cyber​​SEES:类型 2:协作研究:可维持的配电网络
  • 批准号:
    1442642
  • 财政年份:
    2014
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
TWC TTP: Small: Collaborative: Privacy-Preserving Data Collection and Access for IEEE 802.11s-Based Smart Grid Applications
TWC TTP:小型:协作:基于 IEEE 802.11s 的智能电网应用的隐私保护数据收集和访问
  • 批准号:
    1318872
  • 财政年份:
    2013
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
EAGER: Supporting Social Applications in a Hybrid Architecture with CR-Enabled Devices
EAGER:通过支持 CR 的设备支持混合架构中的社交应用程序
  • 批准号:
    1265311
  • 财政年份:
    2013
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Integrated Dynamic Spectrum Access for Throughput, Delay, and Fairness Enhancement
NeTS:媒介:协作研究:用于增强吞吐量、延迟和公平性的集成动态频谱访问
  • 批准号:
    1162057
  • 财政年份:
    2012
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Continuing Grant
NeTS: Small: Exploring the Signal Sparsity in Sensor Networks Based on Compressive Sampling
NeTS:小:基于压缩采样探索传感器网络中的信号稀疏性
  • 批准号:
    1017662
  • 财政年份:
    2010
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Opportunistic and Compressive Sensing in Wireless Sensor Networks
NeTS:媒介:协作研究:无线传感器网络中的机会和压缩感知
  • 批准号:
    0963957
  • 财政年份:
    2010
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: NEDG: Throughput Optimization in Wireless Mesh Networks
合作研究:NEDG:无线网状网络的吞吐量优化
  • 批准号:
    0831852
  • 财政年份:
    2008
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Collaborative Research: NOSS: Autonomous Mobile Underwater SEnsor networks (AMUSE): Design and Applications
合作研究:NOSS:自主移动水下传感器网络(AMUSE):设计和应用
  • 批准号:
    0721669
  • 财政年份:
    2007
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了