CAREER: Probabilistic Network Flow Theory: Embracing Emerging Big Data for Efficient, Reliable and Sustainable Multi-modal Transportation Systems

职业:概率网络流理论:拥抱新兴大数据,打造高效、可靠和可持续的多式联运系统

基本信息

  • 批准号:
    1751448
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) project will establish a mathematical framework based on transportation system modeling and fusion of large-scale multi-source data across different systems including roadway, public transit and parking. The goal is to exploit the spatio-temporal characteristics of travel demand at different scales, understand how network disruption probabilistically affects the transportation systems, and help facilitate decision making regarding planning and real-time operations. The project will lay the foundation for data-driven transportation science that is to have an impact at all scales from individuals' quality of life to the nation's economy. This project will involve collaboration with several public agencies and private firms to develop, deploy and test real-world systems in the Pittsburgh metropolitan area based on large-scale data analytics. All models, algorithms, and examples will be implemented and open sourced in the public domain to promote access to applications and spark discussions from users all over the world. The results will be used to develop a new undergraduate course on data analytics for infrastructure management. Additionally, a virtual laboratory will be developed in conjunction with Carnegie Museum of Natural History for educating students in grades 7-12, college students, and the general public. Students from both Carnegie Mellon University and University of Pittsburgh will be engaged through learning sessions, data analytics competitions, and hands-on activities. The goal of this CAREER project is to develop theories and algorithms that utilize large-scale data to infer characteristics of probabilistic network flow and optimally manage transportation networks under uncertainty. High-dimensional joint probability distributions are used to explicitly model probabilistic network flow and system states in the context of flow dynamics and user behavior. Those joint probability distributions are learned, estimated, and predicted from fusing and mining fine-grained data collected over many years. They reveal the second-order statistics of flow and system states, namely variance-covariance, resulting in a better understanding of the inter-relations among flow/system characteristics, at high temporal and spatial granularity. This project will also develop rigorous statistical theories to identify recurrent and non-recurrent flow patterns in subnetworks through dynamic network partition. The science of network optimization will be advanced by integrating probabilistic network flow into decision making theories for both planning and operation. If successful, this research creates a new paradigm for sensing, modeling, designing, planning and operating complex infrastructure networks in an efficient, holistic, timely and reliable manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展计划(职业)项目将建立一个数学框架,基于运输系统建模和融合大规模多源数据,包括道路,公共交通和停车位。目的是利用不同规模的旅行需求的时空特征,了解网络破坏如何概率地影响运输系统,并有助于促进有关计划和实时操作的决策。该项目将为数据驱动的运输科学奠定基础,该科学将对从个人的生活质量到国家经济产生影响。该项目将涉及与几家公共机构和私人公司的合作,以根据大规模数据分析在匹兹堡大都市地区开发,部署和测试现实世界系统。所有模型,算法和示例都将在公共领域实施和开放,以促进访问应用程序并引发全世界用户的讨论。结果将用于开发有关基础架构管理数据分析的新本科课程。此外,将与卡内基自然历史博物馆一起开发虚拟实验室,以教育7 - 12年级的学生,大学生和公众。来自卡内基·梅隆大学和匹兹堡大学的学生将通过学习会议,数据分析竞赛和动手活动来聘用。 该职业项目的目的是开发利用大规模数据来推断概率网络流的特征并在不确定性下最佳管理运输网络的理论和算法。高维的联合概率分布用于在流动动态和用户行为的背景下明确模拟概率网络流动和系统状态。这些联合概率分布是通过收集的,从融合和采矿的细粒数据中学习,估计和预测的。他们揭示了流动和系统状态的二阶统计数据,即差异 - 协方差,从而更好地理解了在高时空和空间粒度下流量/系统特征之间的相互关系。该项目还将开发严格的统计理论,以通过动态网络分区来识别子网络中的经常性和非旋转流动模式。网络优化科学将通过将概率网络流动到计划和操作的决策理论中来提出。如果成功的话,这项研究将创建一个新的范式,以高效,整体,及时,及时和可靠的方式进行感应,建模,设计,计划和运营复杂的基础设施网络。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting real-time surge pricing of ride-sourcing companies
Cluster analysis of day-to-day traffic data in networks
网络中日常流量数据的聚类分析
A general formulation for multi-modal dynamic traffic assignment considering multi-class vehicles, public transit and parking
Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data
  • DOI:
    10.1016/j.trc.2018.09.002
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Ma;Z. Qian
  • 通讯作者:
    Wei Ma;Z. Qian
Statistical inference of travelers’ route choice preferences with system-level data
利用系统级数据对旅行者的路线选择偏好进行统计推断
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Qian其他文献

The 21st-Century Relative Sea Level Rise in Anne Arundel County, Maryland
马里兰州安妮阿伦德尔县 21 世纪相对海平面上升
Improving Rush Hour Traffic Flow by Computer-Vision-Based Parking Detection and Regulations
通过基于计算机视觉的停车检测和法规改善高峰时段交通流量
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Mertz;Sean Qian;J. Chiang
  • 通讯作者:
    J. Chiang
Inferring heterogeneous treatment effects of work zones on crashes.
推断工作区对碰撞的异质处理效果。
Using APC-AVL Data to Improve Transit Reliability and Accessibility Analysis
使用 APC-AVL 数据提高交通可靠性和可达性分析
How effective is reducing traffic speed for safer work zones? Methodology and a case study in Pennsylvania.
降低交通速度以确保工作区域更安全的效果如何?

Sean Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Qian', 18)}}的其他基金

CPS: Small: Collaborative Research: Optimal Ride Service For All: Users, Service Providers and Society
CPS:小型:协作研究:为所有人提供最佳乘车服务:用户、服务提供商和社会
  • 批准号:
    1931827
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: User-Centric Interdependent Urban Systems: Using Multi-Modal Transportation Data for Demand Prediction and Management in Buildings
EAGER:以用户为中心的相互依赖的城市系统:使用多式联运数据进行建筑物的需求预测和管理
  • 批准号:
    1637222
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Matching Parking Supply to Travel Demand towards Sustainability: a Cyber Physical Social System for Sensing Driven Parking
CPS:协同:协作研究:将停车供应与出行需求相匹配,实现可持续发展:传感驱动停车的网络物理社会系统
  • 批准号:
    1544826
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

任务驱动下的脉冲神经网络随机动力学模型与神经概率计算机制研究
  • 批准号:
    62306078
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
网络攻击下基于概率化性能约束的分布式安全状态估计研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
网络攻击下基于概率化性能约束的分布式安全状态估计研究
  • 批准号:
    62273180
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
基于输入输出数据的异步概率布尔网络分析与控制
  • 批准号:
    62273309
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
基于输入输出数据的异步概率布尔网络分析与控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Neural circuit mechanisms of affective probabilistic learning
情感概率学习的神经回路机制
  • 批准号:
    10744542
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Evaluating the network stability using probabilistic modelling of the future e-mobility ecosystem in urban areas
使用城市地区未来电动交通生态系统的概率模型评估网络稳定性
  • 批准号:
    2690222
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Physically-informed probabilistic modelling of air pollution in Kampala using a low cost sensor network
使用低成本传感器网络对坎帕拉空气污染进行基于物理的概率建模
  • 批准号:
    EP/T00343X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Detecting atherosclerosis from the ear: evaluation of vascular endothelial function using a probabilistic neural network
从耳朵检测动脉粥样硬化:使用概率神经网络评估血管内皮功能
  • 批准号:
    20K19920
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了