CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms

职业:近似和在线算法中的新数学编程技术

基本信息

项目摘要

Numerous applications in engineering, science and business are modeled and solved as combinatorial optimization problems. In today?s digital age, data collection and storage is inexpensive. The bottleneck lies in society's ability to solve increasingly larger problem instances, where the challenge typically stems from computational or informational limitations. This intractability can often be overcome by searching for approximately optimal instead of exactly optimal solutions. This project will design new mathematical-programming-based techniques that are broadly applicable in approximating combinatorial optimization problems. The project will strengthen connections of theoretical computer science to various fields of mathematics such as discrepancy theory, geometry, graph theory, optimization and probability. The PI will also collaborate with industry colleagues to disseminate the theoretical findings on some of the studied problems and assess their practical impact. The educational aspect of this project includes training undergraduate and graduate students, developing new course material and organizing a workshop for high-school teachers. Despite the wide range of possible combinatorial optimization problems, a common approach underlying numerous results in approximation and online algorithms is mathematical programming and rounding. This project will develop new techniques in this area by investigating (1) algorithms based on convex-programming hierarchies, (2) rounding algorithms based on recent advances in algorithmic discrepancy and (3) an online primal-dual framework for convex objectives. This project involves designing general algorithmic techniques (and identifying problem classes to which they apply) as well as improving the state-of-art on central problems such as k-Median, directed Steiner tree, the Beck-Fiala conjecture, unsplittable flow and online multicommodity routing. This project will also expand the applicability of the resulting techniques to areas such as combinatorics and operations research.
工程,科学和业务中的许多应用都被建模和解决为组合优化问题。在当今的数字时代,数据收集和存储价格便宜。瓶颈在于社会解决越来越大的问题实例的能力,挑战通常源于计算或信息限制。通常可以通过搜索大约最佳而不是完全最佳的解决方案来克服这种棘手的性能。该项目将设计新的基于数学编程的技术,这些技术广泛适用于近似组合优化问题。该项目将加强理论计算机科学与数学各个领域的连接,例如差异理论,几何学,图形论,优化和概率。 PI还将与行业同事合作,在某些研究问题上传播理论发现并评估其实际影响。该项目的教育方面包括培训本科生和研究生,开发新的课程材料以及为高中老师组织研讨会。 尽管可能存在广泛的组合优化问题,但在近似和在线算法中众多结果的共同方法是数学编程和舍入。该项目将通过基于凸编程层次结构研究(1)算法来开发该领域的新技术,(2)基于算法差异的最新进展和(3)在线原始二元框架的圆形算法。该项目涉及设计一般算法技术(并确定所适用的问题类别),并改善诸如K-Median,定向的Steiner Tree,Beck-Fiala猜想,无可限制的流量和在线多商品的中心问题。该项目还将扩展所得技术的适用性,以诸如组合和运营研究等领域。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online covering with $$\ell _q$$-norm objectives and applications to network design
在线涵盖 $$ell _q$$-规范目标和网络设计应用
  • DOI:
    10.1007/s10107-019-01409-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Shen, Xiangkun;Nagarajan, Viswanath
  • 通讯作者:
    Nagarajan, Viswanath
The Euclidean k -Supplier Problem
欧几里得 k 供应商问题
  • DOI:
    10.1287/moor.2018.0953
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Nagarajan, Viswanath;Schieber, Baruch;Shachnai, Hadas
  • 通讯作者:
    Shachnai, Hadas
Optimal Decision Tree with Noisy Outcomes
具有噪声结果的最优决策树
Approximation algorithms for the a priori traveling repairman
先验巡回修理工的近似算法
  • DOI:
    10.1016/j.orl.2020.07.009
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Navidi, Fatemeh;Gørtz, Inge Li;Nagarajan, Viswanath
  • 通讯作者:
    Nagarajan, Viswanath
Quasi-Polynomial Algorithms for Submodular Tree Orienteering and Directed Network Design Problems
子模树定向运动和有向网络设计问题的拟多项式算法
  • DOI:
    10.1287/moor.2021.1181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Ghuge, Rohan;Nagarajan, Viswanath
  • 通讯作者:
    Nagarajan, Viswanath
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viswanath Nagarajan其他文献

Lower Bound on the Greedy Approximation Ratio for Adaptive Submodular Cover
自适应子模覆盖贪婪逼近比的下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake Harris;Viswanath Nagarajan
  • 通讯作者:
    Viswanath Nagarajan
Cluster Before You Hallucinate: Node-Capacitated Network Design and Energy Efficient Routing
在你产生幻觉之前集群:节点容量网络设计和节能路由
  • DOI:
    10.1137/20m1360645
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravishankar Krishnaswamy;Viswanath Nagarajan;K. Pruhs;Clifford Stein
  • 通讯作者:
    Clifford Stein

Viswanath Nagarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viswanath Nagarajan', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Scaling Autonomous Vehicle Systems at the Edge: from On-Board Processing to Cloud Infrastructure
合作研究:PPoSS:规划:扩展边缘自主车辆系统:从车载处理到云基础设施
  • 批准号:
    2118234
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
  • 批准号:
    2006778
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Stochastic Covering Under Noisy Outcomes
噪声结果下的随机覆盖
  • 批准号:
    1940766
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

分辨率极限的数学理论与一种新的超分辨率成像技术
  • 批准号:
    12371425
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
基于数学模型的新冠肺炎疫情防控措施效果量化及措施优化研究
  • 批准号:
    82204160
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于数学模型的新冠肺炎疫情防控措施效果量化及措施优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
研究 DNA 超分子结构的新数学方法
  • 批准号:
    11501454
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
广义并联机构位置正解的新理论新方法
  • 批准号:
    51075144
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

2023 Developmental Biology Gordon Research Conference and Gordon Research Seminar
2023年发育生物学戈登研究会议暨戈登研究研讨会
  • 批准号:
    10683608
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Delineating the role of the gut microbiota and its derived metabolites in the development of dementia in multi-ethnic populations
描述肠道微生物群及其衍生代谢物在多种族人群痴呆症发展中的作用
  • 批准号:
    10592025
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Creating Resources Uplifting Nutrition, Culture, and Health at Lunch (CRUNCH Lunch)
在午餐时创造提升营养、文化和健康的资源(CRUNCH 午餐)
  • 批准号:
    10664113
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    2341362
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Training in Health Equity, Highlighting Environmental Inequities, & Growing neighborHood Teachers and Students (YES in THE HEIGHTS)
健康公平培训,强调环境不平等,
  • 批准号:
    10516343
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了