Stochastic Covering Under Noisy Outcomes

噪声结果下的随机覆盖

基本信息

项目摘要

This project will study efficient methods for classifying a system based on outcomes revealed through a series of tests. A common task in medical decision-making is to perform a sequence of diagnostic tests in order to determine an underlying condition as quickly as possible. Tests will reveal partial information about the underlying condition, but may also be subject to error. The goal is to optimize the sequence of tests to minimize cost and time to classification. Similar problems arise in fault detection of complex systems and in threat detection. Noisy or missing data is a major issue in these applications, which often renders traditional models inapplicable. These examples can be modeled as sequential decision trees, and this project will develop methods to study optimal sequential decision trees with noisy outcomes. The specific questions studied in this project are of interest to multiple research communities including operations research, industrial engineering, computer science and machine learning. The educational component of this project involves training graduate and undergraduate students for a career in research, enhancing the curriculum of graduate courses, and outreach programs to high school students designed to broaden participation in STEM. This project will study models and algorithms for stochastic covering problems in the presence of noisy outcomes. Classical models for these problems assume that random outcomes are observed without any noise. This project will consider new models that incorporate noise in the following ways. In the stochastic noise model, the outcomes of certain tests are uncertain with known probability distributions. The stochastic noise can be either non-persistent or persistent, depending on whether observing the same outcome repeatedly results in independent samples. In the adversarial noise model, each noisy outcome instantiates to a value that results in the worst-case objective. A central paradigm in this project is the optimal decision tree, where one needs to identify an unknown random hypothesis using an adaptive sequence of tests. Apart from the noisy optimal decision tree problem, this project will also study noisy versions of stochastic submodular-cover and sequential testing problems. The project will design algorithms with mathematically rigorous performance guarantees. It will also test the empirical performance of the resulting algorithms on synthetic as well as publicly available datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将根据通过一系列测试揭示的结果研究有效的方法,用于对系统进行分类。医疗决策中的一个常见任务是执行一系列诊断测试,以便尽快确定潜在的状况。 测试将揭示有关潜在条件的部分信息,但也可能出现错误。 目的是优化测试顺序,以最大程度地减少成本和分类时间。 在检测复杂系统和威胁检测中的故障检测中会出现类似的问题。 在这些应用程序中,嘈杂或缺失的数据是一个主要问题,这通常使传统模型无法实现。 这些示例可以建模为顺序决策树,该项目将开发出研究具有嘈杂结果的最佳顺序决策树的方法。该项目中研究的具体问题对多个研究社区感兴趣,包括运营研究,工业工程,计算机科学和机器学习。该项目的教育组成部分涉及培训毕业生和本科生从事研究职业,增强研究生课程的课程,并向旨在扩大STEM参与的高中学生提供外展课程。该项目将研究在存在嘈杂结果的情况下涵盖问题的随机性模型和算法。这些问题的经典模型假设观察到随机结果而没有任何噪音。该项目将考虑以以下方式结合噪声的新模型。在随机噪声模型中,某些测试的结果与已知概率分布不确定。随机噪声可能是非持久的或持久性的,具体取决于观察相同结果是否反复导致独立样本。在对抗性噪声模型中,每个嘈杂的结果实例化成导致最差目标的值。该项目中的中央范式是最佳决策树,其中需要使用自适应测试序列来识别未知的随机假设。除了嘈杂的最佳决策树问题外,该项目还将研究随机下覆盖和顺序测试问题的嘈杂版本。该项目将使用数学上严格的性能保证设计算法。它还将测试由合成以及公开可用数据集的由此产生的算法的经验性能。该奖项反映了NSF的法定任务,并且使用基金会的智力优点和更广泛的影响评估标准,认为值得通过评估来支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Batched Dueling Bandits
批量决斗强盗
Stochastic makespan minimization in structured set systems
结构化集合系统中的随机完工时间最小化
  • DOI:
    10.1007/s10107-021-01741-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Gupta, Anupam;Kumar, Amit;Nagarajan, Viswanath;Shen, Xiangkun
  • 通讯作者:
    Shen, Xiangkun
Minimum Cost Adaptive Submodular Cover
最低成本自适应子模块覆盖
Non-Adaptive Stochastic Score Classification and Explainable Halfspace Evaluation
  • DOI:
    10.1007/978-3-031-06901-7_21
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Ghuge;Anupam Gupta;V. Nagarajan
  • 通讯作者:
    R. Ghuge;Anupam Gupta;V. Nagarajan
The Power of Adaptivity for Stochastic Submodular Cover
随机子模覆盖的自适应能力
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viswanath Nagarajan其他文献

Lower Bound on the Greedy Approximation Ratio for Adaptive Submodular Cover
自适应子模覆盖贪婪逼近比的下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake Harris;Viswanath Nagarajan
  • 通讯作者:
    Viswanath Nagarajan
Cluster Before You Hallucinate: Node-Capacitated Network Design and Energy Efficient Routing
在你产生幻觉之前集群:节点容量网络设计和节能路由
  • DOI:
    10.1137/20m1360645
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravishankar Krishnaswamy;Viswanath Nagarajan;K. Pruhs;Clifford Stein
  • 通讯作者:
    Clifford Stein

Viswanath Nagarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viswanath Nagarajan', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Scaling Autonomous Vehicle Systems at the Edge: from On-Board Processing to Cloud Infrastructure
合作研究:PPoSS:规划:扩展边缘自主车辆系统:从车载处理到云基础设施
  • 批准号:
    2118234
  • 财政年份:
    2021
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
  • 批准号:
    2006778
  • 财政年份:
    2020
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Standard Grant
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
  • 批准号:
    1750127
  • 财政年份:
    2018
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

辽西北半干旱区秸秆覆盖种植玉米水分运移与生长模拟研究
  • 批准号:
    32301689
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向地下受限空间的无人机同时探索与覆盖规划研究
  • 批准号:
    62303249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“MIPs宽覆盖识别-DNA辅助阵列芯片”构建中药毒性PAs新型靶向分析评价系统
  • 批准号:
    82304706
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向毫米波覆盖增强的高选择性硅基相控阵中继收发机芯片
  • 批准号:
    62371296
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向多组分气体检测的3-5μm全波段覆盖的中红外全光纤激光源研究
  • 批准号:
    62375187
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
创新的电机技术,涵盖电桥和电角车辆架构,实现高效和可持续的电动汽车
  • 批准号:
    10061830
  • 财政年份:
    2023
  • 资助金额:
    $ 37.09万
  • 项目类别:
    EU-Funded
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EM-TECH - Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
EM-TECH - 创新电动马达技术,涵盖电动车轴和电动弯道车辆架构,实现高效和可持续的电动交通
  • 批准号:
    10064117
  • 财政年份:
    2023
  • 资助金额:
    $ 37.09万
  • 项目类别:
    EU-Funded
Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
  • 批准号:
    23K03150
  • 财政年份:
    2023
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Comprehensive and Scalable Self-Care Service Covering Health, Wellbeing, Safety and Independence to Support People Throughout their Ageing Journey
涵盖健康、福祉、安全和独立的全面且可扩展的自我护理服务,为人们的整个老龄化之旅提供支持
  • 批准号:
    10027373
  • 财政年份:
    2022
  • 资助金额:
    $ 37.09万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了