CAREER: OPTIMIZATION FORMULATIONS AND ALGORITHMS FOR THE ANALYSIS AND DESIGN OF HIERARCHICAL MODULAR SYSTEMS
职业:分层模块化系统分析和设计的优化公式和算法
基本信息
- 批准号:1748516
- 负责人:
- 金额:$ 50.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modularization is a pervasive organization strategy that is used by living, socio-economic, and industrial systems to cope with complexity. Modular industrial systems are built from small-scale, standardized equipment modules, which perform well-defined tasks. Standardization and size reduction enables mass fabrication and fast deployment of equipment, which accelerates experimentation and learning and ultimately leads to technology cost reductions. Modular systems enable staged (sequential) investment strategies, which provide flexibility to mitigate market and regulatory uncertainties. They also facilitate exploitation of highly dispersed resources that are deemed too expensive to centralize. The goal of this CAREER project is to develop optimization formulations and algorithms that facilitate the analysis and design of hierarchical modular systems. These capabilities will be used to design flexible combined power fertilizer systems in rural areas that produce power, ammonia, and urea from distributed resources such as wind energy, natural gas, biomass, and organic waste. Current industrial-scale process systems are highly customized and involve logistically-complex, expensive and lengthy construction phases. Identifying technologies that are suitable for modularization and determining appropriate degrees of enterprise-wide modularity can improve operational flexibility and mitigate financial risk. Large-scale industrial process systems that benefit from the economies of scale can evolve into a hybrid state in which certain functions will be performed in small modular systems that increase flexibility. To model these systems the use of hierarchical graph abstractions is proposed to provide a natural framework for analysis and optimization of the benefits of modularity. Graph abstractions enable the use of techniques to properly organize process equipment units into tightly integrated modules and can be applied recursively at higher levels where modules represent subsystems, entire production facilities, and local/regional/global supply chain hubs. Hierarchical graph structures will be exploited by combinatorial optimization and multi-stage stochastic programming techniques to derive scalable design and investment strategies that mitigate markets and regulatory risk. The educational part of this project aims to incorporate new hierarchical decision-making concepts into the engineering curriculum, make the curriculum itself more modular and develop software tools that enable the design of complex hierarchical systems using crowd-sourcing. Planned outreach activities will provide K-12 students from schools with high enrollment of underrepresented minorities with opportunities to learn about the benefits of modular decision-making and motivate them to pursue career paths in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模块化是一种普遍的组织策略,由生活,社会经济和工业系统使用来应对复杂性。模块化工业系统是由执行明确任务的小型标准化设备模块构建的。标准化和尺寸降低可以使设备的大规模制造和快速部署,从而加速了实验和学习,并最终导致技术成本降低。模块化系统实现了分阶段(顺序)投资策略,从而为减轻市场和监管不确定性提供了灵活性。它们还促进了被认为太昂贵而无法集中的高度分散资源的剥削。该职业项目的目标是开发优化配方和算法,以促进分层模块化系统的分析和设计。 这些功能将用于在农村地区设计柔性的合并功率肥料系统,这些系统从分布式资源(例如风能,天然气,生物量和有机废物)产生电力,氨和尿素。当前的工业规模工艺系统是高度定制的,涉及逻辑上的复合,昂贵且冗长的建筑阶段。识别适合模块化并确定适当程度的企业范围内模块化的技术可以提高运营灵活性并减轻财务风险。从规模经济经济中受益的大规模工业过程系统可以演变为混合状态,在该状态下,将在提高灵活性的小型模块化系统中执行某些功能。为了建模这些系统,提出了层次图抽象的使用,以提供一个自然框架,以分析和优化模块化的益处。图形抽象使技术能够使用技术将工艺设备单元正确组织到紧密整合的模块中,并且可以在模块代表子系统,整个生产设施以及本地/区域/全球供应链中心的较高级别上递归应用。层次图结构将通过组合优化和多阶段随机编程技术来利用,以得出可扩展的设计和投资策略,以减轻市场和监管风险。 该项目的教育部分旨在将新的层次决策概念纳入工程课程,使课程本身更加模块化,并开发软件工具,以便使用众包设计复杂的层次结构系统。计划的外展活动将为来自学校的K-12学生提供高分代表人数不足的少数群体的入学率,并有机会了解模块化决策的好处,并激励他们在STEM领域中追求职业道路。这一奖项反映了NSF的法定任务,并被视为已被视为值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Space-time dynamics of electricity markets incentivize technology decentralization
电力市场的时空动态激励技术去中心化
- DOI:10.1016/j.compchemeng.2019.05.005
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Shao, Yue;Zavala, Victor
- 通讯作者:Zavala, Victor
A spatial superstructure approach to the optimal design of modular processes and supply chains
模块化流程和供应链优化设计的空间上层建筑方法
- DOI:10.1016/j.compchemeng.2022.108102
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Shao, Yue;Ma, Jiaze;Zavala, Victor M.
- 通讯作者:Zavala, Victor M.
Mitigating investment risk using modular technologies
使用模块化技术降低投资风险
- DOI:10.1016/j.compchemeng.2021.107424
- 发表时间:2021
- 期刊:
- 影响因子:4.3
- 作者:Shao, Yue;Hu, Yicheng;Zavala, Victor M.
- 通讯作者:Zavala, Victor M.
Modularity measures: Concepts, computation, and applications to manufacturing systems
模块化措施:概念、计算以及在制造系统中的应用
- DOI:10.1002/aic.16965
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Shao, Yue;Zavala, Victor M.
- 通讯作者:Zavala, Victor M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Zavala Tejeda其他文献
Victor Zavala Tejeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Zavala Tejeda', 18)}}的其他基金
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
- 批准号:
2132036 - 财政年份:2021
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
CRISP 2.0 Type 2: Collaborative Research: Exploiting Interdependencies Between Computing and Electrical Power Infrastructures to Maximize Resilience and Flexibility
CRISP 2.0 类型 2:协作研究:利用计算和电力基础设施之间的相互依赖性来最大限度地提高弹性和灵活性
- 批准号:
1832208 - 财政年份:2018
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid-Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
- 批准号:
1837812 - 财政年份:2018
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
Multi-Stakeholder Decision-Making for the Development of Livestock Waste-to-Biogas Systems
畜牧废物转化沼气系统发展的多方利益相关者决策
- 批准号:
1604374 - 财政年份:2016
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
Multi-Scale Predictive Control of Coupled Energy Networks
耦合能源网络的多尺度预测控制
- 批准号:
1609183 - 财政年份:2016
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
相似国自然基金
不确定条件下雷达网络推断优化资源分配方法
- 批准号:62371379
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于语义布局自适应优化的图像智能适配方法研究
- 批准号:62302356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异构特征自适应融合优化及鲁棒关键点匹配方法研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
基于种群生存压力图模型的海洋资源优化分配方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异构特征自适应融合优化及鲁棒关键点匹配方法研究
- 批准号:62176242
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
CAREER: Modeling, Optimization, and Equilibrium Formulations for the Analysis and Design of Circular Economy Networks
职业:循环经济网络分析和设计的建模、优化和平衡公式
- 批准号:
2339068 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Continuing Grant
Strengths and Limitations of Formulations for Combinatorial Optimization Problems.
组合优化问题公式的优点和局限性。
- 批准号:
RGPIN-2020-04346 - 财政年份:2022
- 资助金额:
$ 50.24万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
- 批准号:
RGPIN-2019-04067 - 财政年份:2022
- 资助金额:
$ 50.24万 - 项目类别:
Discovery Grants Program - Individual
Clustering and semi-supervised learning on large heterogeneous graphs: Mathematical formulations and numerical optimization algorithms
大型异构图上的聚类和半监督学习:数学公式和数值优化算法
- 批准号:
569398-2022 - 财政年份:2022
- 资助金额:
$ 50.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Symbiotic-based discovery of turbinmicin, a safe and selective antifungal against resistant fungi
基于共生的涡轮霉素的发现,这是一种针对耐药真菌的安全且选择性的抗真菌药物
- 批准号:
10584574 - 财政年份:2022
- 资助金额:
$ 50.24万 - 项目类别: