Multi-Scale Predictive Control of Coupled Energy Networks
耦合能源网络的多尺度预测控制
基本信息
- 批准号:1609183
- 负责人:
- 金额:$ 32.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infrastructure networks (electrical, natural gas, water, transportation) have evolved into massive and highly sophisticated engineering systems. The U.S. electrical transmission network comprises 30,000 transmission lines that span 450,000 miles and that are connected to 55,000 substations. The gas transmission network consists of 210 pipelines that span 305,000 miles and comprise 1,400 compressor stations and over 11,000 delivery gates. Each substation and delivery gate is connected to a vast distribution (utility) network that takes resources to buildings, homes, and industrial facilities. Water and transportation networks have similar arrangements and complexity. Infrastructure networks present drastically different time scales and layouts that make them notoriously difficult to synchronize. For instance, electricity flows throughout the power grid nearly instantaneously while natural gas flows in pipelines at 30-50 miles per hour. The difficulty in achieving synchronization became evident during the so-called Polar Vortex of 2014 in which record low temperatures experienced in the Midwest region of the U.S. triggered cascading shortages of natural gas and electricity that affected the entire country. This project seeks to develop new control architectures that can effectively synchronize infrastructure networks by managing space and time scales in a systematic manner. The control architectures will enable more effective mitigation of extreme weather and man-made events as well as a more efficient distribution of resources. The research team will pursue the project goals by developing a new transformative control paradigm -referred to by the investigators as multi-scale model predictive control (msMPC). The msMPC formulation will enable the systematic design of hierarchical control architectures capable of handling heterogenous energy networks covering vast and disparate spatial and temporal scales. The key idea behind msMPC is to create a control hierarchy in which a top level coordinating controller computes control actions using highly coarse but tractable space-time representations of the entire system. The coarse control actions are then communicated and progressively refined at the lower levels. At the lowest level is a set of decentralized control agents each operating on a portion of the time-space domain. Each agent rejects local and high-frequency disturbances, while remaining coordinated with other agents through capturing global information obtained from the coarser levels. In other words, msMPC is a paradigm that seeks to bridge the gap between fully centralized and fully decentralized control. The project also aims at developing a stability theory for msMPC hierarchies and performing studies to identify more effective infrastructure arrangements (e.g., hub-based as opposed to resource-based). The interdisciplinary nature of the work will provide a unique training environment for graduate students that combines control and economic theory, systems modeling, optimization algorithms, and high-performance computing.
基础设施网络(电气,天然气,水,运输)已演变为庞大且高度复杂的工程系统。 美国电气传输网络包括30,000条传输线,跨越450,000英里,并连接到55,000个变电站。气体传输网络由210个管道组成,跨越305,000英里,包括1,400个压缩机站和超过11,000个运送门。每个变电站和交付门都连接到一个庞大的分布(实用程序)网络,该网络将资源带入建筑物,房屋和工业设施。 水和运输网络具有相似的布置和复杂性。基础架构网络呈现出截然不同的时间尺度和布局,使它们臭名昭著地同步。例如,电力在整个电网上几乎瞬间流动,而天然气以每小时30-50英里的速度流动。在2014年所谓的极地涡流中,实现同步的困难变得显而易见,在美国中西部地区,创纪录的低温引发了影响整个国家的天然气和电力的级联短缺。该项目旨在开发新的控制体系结构,这些架构可以通过系统地管理时空尺度来有效地同步基础架构网络。 控制体系结构将使对极端天气和人造事件以及更有效的资源分配更有效地缓解。研究团队将通过开发一个新的变革性控制范式来追求项目目标,并作为多规模模型预测控制(MSMPC)引用了研究人员。 MSMPC公式将使能够处理能够处理涵盖庞大而不同的空间和时间尺度的异质能量网络的分层控制体系结构的系统设计。 MSMPC背后的关键思想是创建一个控制层次结构,在该层次结构中,顶层协调控制器使用整个系统的高度粗糙但可拖延的时空表示来计算控制操作。然后在较低级别传达粗制控制动作并逐步完善。在最低级别是一组分散的控制剂,每个控制剂在时空域的一部分上工作。每个代理商都拒绝本地和高频干扰,同时通过捕获从粗糙级别获得的全球信息与其他代理保持协调。换句话说,MSMPC是一种范式,旨在弥合完全集中和完全分散的控制之间的差距。该项目还旨在为MSMPC层次结构开发稳定理论,并进行研究以确定更有效的基础架构布置(例如,基于HUB而不是基于资源的基础)。 这项工作的跨学科性质将为研究生提供独特的培训环境,这些培训环境结合了控制和经济理论,系统建模,优化算法和高性能计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Zavala Tejeda其他文献
Victor Zavala Tejeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Zavala Tejeda', 18)}}的其他基金
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
- 批准号:
2132036 - 财政年份:2021
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
CAREER: OPTIMIZATION FORMULATIONS AND ALGORITHMS FOR THE ANALYSIS AND DESIGN OF HIERARCHICAL MODULAR SYSTEMS
职业:分层模块化系统分析和设计的优化公式和算法
- 批准号:
1748516 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid-Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
- 批准号:
1837812 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
CRISP 2.0 Type 2: Collaborative Research: Exploiting Interdependencies Between Computing and Electrical Power Infrastructures to Maximize Resilience and Flexibility
CRISP 2.0 类型 2:协作研究:利用计算和电力基础设施之间的相互依赖性来最大限度地提高弹性和灵活性
- 批准号:
1832208 - 财政年份:2018
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
Multi-Stakeholder Decision-Making for the Development of Livestock Waste-to-Biogas Systems
畜牧废物转化沼气系统发展的多方利益相关者决策
- 批准号:
1604374 - 财政年份:2016
- 资助金额:
$ 32.86万 - 项目类别:
Standard Grant
相似国自然基金
大规模人群出行的不确定性分析与城市级别人流预测研究
- 批准号:61872306
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
基于交替方向乘子法的大规模多能耦合系统优化问题研究
- 批准号:61873303
- 批准年份:2018
- 资助金额:16.0 万元
- 项目类别:面上项目
大规模复杂系统模型预测控制分布式优化关键技术研究
- 批准号:61703320
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
大规模双向队列人群中基于miR-375构建HBV相关性肝癌发病早期预测模型
- 批准号:81773488
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于大规模前瞻性队列复杂纵向数据的哮喘风险评估与预测模型的建立
- 批准号:81530086
- 批准年份:2015
- 资助金额:273.0 万元
- 项目类别:重点项目
相似海外基金
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Impact of Autonomic Dysfunction on Multi-Organ Dysfunction following Severe TBI: The AUTO-BOOST Study
严重 TBI 后自主神经功能障碍对多器官功能障碍的影响:AUTO-BOOST 研究
- 批准号:
10607731 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Ethnically Diverse iPSC-Cardiomyocyte Panel for Pharmacogenomics and Drug Safety Testing
用于药物基因组学和药物安全性测试的种族多样化 iPSC-心肌细胞小组
- 批准号:
10755624 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Systems Science Approaches for Reducing Youth Obesity Disparities
减少青少年肥胖差异的系统科学方法
- 批准号:
10664145 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别: