CHS: Small: Collaborative Research: Making Information Deserts Visible: computational models, disparities in civic technology use, and urban decision making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
基本信息
- 批准号:1816080
- 负责人:
- 金额:$ 15.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will develop a foundational tool for understanding how civic technologies are used and how information inequalities manifest in a city. User data from new civic technologies that reveal inequalities in the information environments of citizens has only recently become available. Since a large portion of data is demographically or geospatially biased due to varying human-data relationships, computational social scientists have used data modeling and algorithmic techniques to adjust the data and remove biases during data-processing. However, this approach limits our understanding of how and why biased information is created, and our ability to address urban information inequalities and biased data-creation. Consequently, as cities transition to e-government enabled by information and communication technology, they may project the inequities of the past into the smart cities of the future, so a fresh approach is needed. This innovative research analyzes and visualizes data from Boston's 311 system for reporting non-emergency issues to the city government, using computational and qualitative approaches to identify, categorize, and understand the kinds of information disparities that are becoming institutionalized by crowdsourced municipal systems, inhibiting smart city transitions, and perpetuating information deserts. For Boston and its citizens, this research could improve both the function and the equity of the city's 311 system. The resulting insights and tools could also inform other cities' implementation of smart city technologies, identify potential distortions in existing urban datasets, and surface potential corrections that could improve decision making and equitable delivery of services for all residents. The research will be performed in three phases. First, six years of civic, census, and geospatial data will be combined with interviews with users, then analyzed to discover the socio-technical dimensions of "information deserts," which are conceptual and physical spaces where local information is poorly embedded in diverse infrastructures and/or less available than in other areas of a city. This research will develop a conceptual model to determine where and how information deserts are located, identify a typology of information deserts based on related community features; and, assess relationships between information deserts and major demographic and geospatial features of data biases. Second, the research team will perform semi-structured interviews with civic stakeholders to gather user requirements for a visual analytics tool as well as to validate the ground truths for the initial models. Based on this, a visual analytics tool will be created to show different types of information deserts, their causes, and anticipated results. Third, through an iterative process the research team will conduct participatory modeling activities with municipality officials and relevant stakeholders to refine the computational models with local contextual information. Also, the usability of the visual analytics tool will be improved with additional user studies. The resulting conceptual and computational models of information deserts will support a refined visual analytics tool that displays information deserts and their characteristics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将开发一个基础工具,用于了解公民技术的使用方式以及信息不平等如何在城市中体现。 来自新公民技术的用户数据揭示了公民信息环境中的不平等,直到最近才变得可用。由于人类与数据关系的不同,很大一部分数据在人口统计或地理空间上存在偏差,计算社会科学家使用数据建模和算法技术来调整数据并消除数据处理过程中的偏差。然而,这种方法限制了我们对如何以及为何创建有偏见的信息的理解,以及我们解决城市信息不平等和有偏见的数据创建的能力。因此,随着城市向信息和通信技术支持的电子政务过渡,它们可能会将过去的不平等现象投射到未来的智慧城市中,因此需要一种新的方法。这项创新研究分析并可视化来自波士顿 311 系统的数据,用于向市政府报告非紧急问题,使用计算和定性方法来识别、分类和理解众包市政系统正在制度化的信息差异类型,抑制智能。城市转型和永久的信息沙漠。对于波士顿及其市民来说,这项研究可以改善该市 311 系统的功能和公平性。由此产生的见解和工具还可以为其他城市实施智慧城市技术提供信息,识别现有城市数据集中的潜在扭曲,并提出潜在的纠正措施,从而改善决策和为所有居民公平地提供服务。该研究将分三个阶段进行。首先,六年的公民、人口普查和地理空间数据将与用户访谈相结合,然后进行分析,以发现“信息沙漠”的社会技术维度,即本地信息在不同基础设施中嵌入不佳的概念和物理空间和/或比城市其他地区更少。本研究将开发一个概念模型来确定信息沙漠的位置和方式,根据相关的社区特征确定信息沙漠的类型;并且,评估信息荒漠与数据偏差的主要人口和地理空间特征之间的关系。其次,研究团队将与公民利益相关者进行半结构化访谈,以收集用户对可视化分析工具的需求,并验证初始模型的基本事实。在此基础上,将创建一个可视化分析工具来显示不同类型的信息荒漠、其原因和预期结果。第三,通过迭代过程,研究团队将与市政官员和相关利益相关者一起开展参与式建模活动,以利用当地背景信息完善计算模型。此外,可视化分析工具的可用性将通过额外的用户研究得到改善。由此产生的信息沙漠概念和计算模型将支持显示信息沙漠及其特征的精细可视化分析工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
For impactful community engagement: check your role
为了进行有影响力的社区参与:检查您的角色
- DOI:10.1145/3401720
- 发表时间:2020-06
- 期刊:
- 影响因子:22.7
- 作者:Pine, Kathleen H.;Hinrichs, Margaret M.;Wang, Jieshu;Lewis, Dana;Johnston, Erik
- 通讯作者:Johnston, Erik
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Johnston其他文献
Erik Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Johnston', 18)}}的其他基金
Promoting Empathy and Collaborative Decision Making for Natural Resource Management using a Computer Mediated Scenario
使用计算机介导的场景促进自然资源管理的同理心和协作决策
- 批准号:
1530847 - 财政年份:2015
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
VOSS: Managing Hybrid Challenge Platforms to Promote Innovation
VOSS:管理混合挑战平台以促进创新
- 批准号:
1322296 - 财政年份:2013
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
RAPID: Challenge Platforms with a Public Intent Critical Reflections and Future Practices
RAPID:具有公共意图的挑战平台批判性反思和未来实践
- 批准号:
1241782 - 财政年份:2012
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
RAPID VOSS: Understanding the challenges inherent in the design, execution and participation in governance challenge platforms
RAPID VOSS:了解治理挑战平台的设计、执行和参与所固有的挑战
- 批准号:
1143761 - 财政年份:2011
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
Collaborative Research: VOSS: Joining a Virtual Organization: A Multi-Method Study of Newcomer to Established Collaborations
协作研究:VOSS:加入虚拟组织:对已建立协作的新手的多方法研究
- 批准号:
0838206 - 财政年份:2008
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CHS: Small: Collaborative Research: Catalyzing Youth Civic Engagement Through Innovations in Social Computing
CHS:小型:合作研究:通过社会计算创新促进青年公民参与
- 批准号:
2054741 - 财政年份:2020
- 资助金额:
$ 15.54万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
- 批准号:
2007094 - 财政年份:2020
- 资助金额:
$ 15.54万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: Social Virtual Reality Technology to Improve Networked Meetings
CHS:小型:协作研究:社交虚拟现实技术改善网络会议
- 批准号:
2007755 - 财政年份:2020
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
- 批准号:
1910281 - 财政年份:2020
- 资助金额:
$ 15.54万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
- 批准号:
2006400 - 财政年份:2020
- 资助金额:
$ 15.54万 - 项目类别:
Continuing Grant