EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
基本信息
- 批准号:1741673
- 负责人:
- 金额:$ 199.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most natural phenomena obey "time-reversal symmetry", which states that if the direction of time is reversed, for example, the propagation of light waves is the same in both forward and backward directions. But optical transport that only lets light pass one-way, termed "non-reciprocal propagation", is vital for energy reduction and noise suppression in telecommunications. The generation of non-reciprocity requires breaking time-reversal symmetry, and typically can be realized in magneto-optical materials via the Faraday effect (where light passing through a material is subject to an external magnetic field, thus changing the light wave orientation). This fundamental requirement of an external magnetic field places significant limitations on device miniaturization and on-chip integration. This program researches a new material platform "gapped Dirac materials" whose intrinsic Berry curvature, a key and newly-recognized property of their energy band structure, can act as an effective magnetic field - thus giving rise to unique chiral edge plasmon resonances that can facilitate non-reciprocal light propagation. The outcome of this research will enable compact, magnetic-field-free (and thus lightweight and energy-efficient) tunable nonreciprocal devices for optical communications and quantum information processing. This project will train graduate and under-represented students in STEM in a multidisciplinary environment; provide outreach to the public through programs such as Research Experience for Teachers, "Science on Tap" public lectures, and "Broaden the Horizon" that focuses on middle school female students; and develop and distribute analysis tools and codes under open source licenses.This project explores a new frontier in magneto-optics and magnetic-field-free non-reciprocal light transport based on Dirac materials such as transition-metal dichalcogenide monolayers, where the breaking of inversion symmetry and large spin-orbit coupling lead to valley-spin locking. The intrinsic Berry curvature of these materials further acts as an effective magnetic field in momentum space, which under a valley imbalance can give rise to chiral plasmon modes that enable non-reciprocal light propagation at mid infrared and terahertz frequencies. Valley polarization in these gapped Dirac materials will be induced through three approaches: 1) doping with transition-metal impurities; 2) proximity to layered magnetic transition-metal phosphorous trichalcogenides; and 3) electrical spin injection. Electromagnetic modeling and calculations of the Berry curvature, magneto optical effects, and chiral plasmons in selected monolayers and heterostructures will provide guidance for material synthesis by molecular beam epitaxy and chemical vapor deposition, and atomic scale characterization with spin-resolved scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy, and polarization selective photoluminescence, as well as far-field optical characterization and near-field scanning optical microscopy imaging. Through an integrated experimental-theoretical approach, this project aims to demonstrate wave guiding chiral plasmons in the mid-infrared to terahertz range to enable magnetic-field-free optical devices such as non-reciprocal Faraday isolators and tunable optical circulators.
大多数自然现象遵守“时间反转对称性”,该现象指出,例如,如果时间方向逆转,则在向前和向后方向的光波传播相同。但是,只能使光通过单向,称为“非转流传播”的光学传输对于电信中的能量还原和抑制噪声至关重要。非生产力的产生需要打破时间反转的对称性,通常可以通过法拉第效应在磁光材料中实现(其中通过材料的光照受外部磁场的影响,从而改变光波方向)。这种对外部磁场的基本要求对设备微型化和芯片积分施加了重大限制。 该程序研究了一个新的材料平台“间隙狄拉克材料”,其内在的浆果曲率是其能量带结构的关键和新认可的特性,可以作为一个有效的磁场 - 从而引起独特的手性等离子等离子体的共振,从而促进非交流光传播。这项研究的结果将实现用于光学通信和量子信息处理的紧凑,无磁场(因此轻巧且能效)的非偏置设备。该项目将在多学科环境中培训STEM的毕业生和代表性不足的学生;通过诸如教师的研究经验,“ Tap in Tap”公开演讲以及“扩大地平线”等计划,向公众提供宣传,该计划重点介绍了中学女学生;并开发和分发分析工具和代码在开源许可下。该项目探索了基于狄拉克材料(例如过渡金属二进制元素化元素单层)的磁极磁和无磁性非磁性非磁性光传输的新领域,在该材料中,反转对称性和大型Spin-Orbit coupling coupllit couplley couplley spinley spin leds leds valley spin loce loce。这些材料的固有浆果曲率进一步充当动量空间中的有效磁场,在山谷不平衡下,这会引起手性等离子体模式,该模式在中期红外和terahertz频率下实现了非逆向光传播。这些间隙的狄拉克材料中的山谷极化将通过三种方法诱导:1)与过渡金属杂质掺杂; 2)靠近分层的磁过渡金属磷酸盐元素; 3)电旋转注射。 选定的单层和异质结构中浆果曲率,磁光光学效应和手性等离子体的电磁模型和计算,将通过分子束外延和化学蒸汽沉积和原子量表表征分子束的外延和化学蒸气量表表征,并通过分子束外延和化学蒸汽量表进行指导,以旋转的扫描型倾向显微镜和分解型散发型散发型散发型散布型散布型散布型,并有效。光致发光以及远场光学表征和近场扫描光学显微镜成像。通过综合实验理论方法,该项目旨在证明中红外的波动性手性等离子体到Terahertz范围,以实现无磁场光学设备,例如非重新磁性的Faraday隔离器和可调的光学循环器。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interaction of Lithium with a Monolayer of Graphene Monoxide
- DOI:10.1021/acs.jpcc.1c01069
- 发表时间:2021-06
- 期刊:
- 影响因子:3.7
- 作者:D. Radevych;M. Gajdardziska-Josifovska;C. Hirschmugl;M. Weinert
- 通讯作者:D. Radevych;M. Gajdardziska-Josifovska;C. Hirschmugl;M. Weinert
Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping
- DOI:10.1103/physrevlett.128.116401
- 发表时间:2022-03-14
- 期刊:
- 影响因子:8.6
- 作者:Bugnet, M.;Ederer, M.;Kepaptsoglou, D. M.
- 通讯作者:Kepaptsoglou, D. M.
Terahertz response of gadolinium gallium garnet (GGG) and gadolinium scandium gallium garnet (SGGG)
- DOI:10.1063/1.5131366
- 发表时间:2020-01
- 期刊:
- 影响因子:3.2
- 作者:Mohsen Sabbaghi;G. Hanson;M. Weinert;F. Shi;C. Cen
- 通讯作者:Mohsen Sabbaghi;G. Hanson;M. Weinert;F. Shi;C. Cen
Tunable unidirectional surface plasmon polaritons at the interface between gyrotropic and isotropic conductors
- DOI:10.1364/optica.425290
- 发表时间:2021-07-20
- 期刊:
- 影响因子:10.4
- 作者:Liang, Yi;Pakniyat, Samaneh;Cen, Cheng
- 通讯作者:Cen, Cheng
Design and Analysis of an Electronically Tunable Magnet-Free Non-Reciprocal Metamaterial
电子可调无磁非互易超材料的设计与分析
- DOI:10.1109/tap.2022.3164160
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:Poddar, Swadesh;Holmes, Alexander M.;Hanson, George W.
- 通讯作者:Hanson, George W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lian Li其他文献
Study on the whole dynamical fracture process of sandstone samples
砂岩样品动态断裂全过程研究
- DOI:
10.1007/s10704-023-00759-y - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Fu Cao;Liping Yang;Lian Li;Yuefeng Li;Qi;Enlong Liu - 通讯作者:
Enlong Liu
Epitaxial Graphene on SiC(0001): More Than Just Honeycombs
- DOI:
10.5772/13936 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lian Li - 通讯作者:
Lian Li
Use of nonprescription medicines by patients with COPD: A survey in Chongqing Municipality, China
慢性阻塞性肺病患者非处方药使用情况:中国重庆市的一项调查
- DOI:
10.1177/1479972312437852 - 发表时间:
2012 - 期刊:
- 影响因子:4.1
- 作者:
G. Cao;Jing Li;Lian Li;Haidong Li;Fang Wang;Hucheng Wang;Lin Zhang - 通讯作者:
Lin Zhang
Web Service Selection Based on Improved Genetic Algorithm
基于改进遗传算法的Web服务选择
- DOI:
10.1007/978-3-642-31968-6_67 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yi Lin;Yi Yang;Lian Li;Junling Wang;Chenyang Zhao;Wenqiang Guo - 通讯作者:
Wenqiang Guo
Targeting Macrophage for the Treatment of Amyotrophic Lateral Sclerosis
靶向巨噬细胞治疗肌萎缩侧索硬化症
- DOI:
10.2174/1871527318666190409103831 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lian Li;Jie Liu;Hua She - 通讯作者:
Hua She
Lian Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lian Li', 18)}}的其他基金
Collaborative Research: DMREF: Discovery of novel magnetic materials through pseudospin control
合作研究:DMREF:通过赝自旋控制发现新型磁性材料
- 批准号:
2323858 - 财政年份:2023
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
Tailoring the Properties of Heterostructures of Monolayers: Epitaxial Growth and Doping
定制单层异质结构的特性:外延生长和掺杂
- 批准号:
1734017 - 财政年份:2016
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
Tailoring the Properties of Heterostructures of Monolayers: Epitaxial Growth and Doping
定制单层异质结构的特性:外延生长和掺杂
- 批准号:
1508560 - 财政年份:2015
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
Epitaxial Growth and Doping of Topological Insulator Heterostructures
拓扑绝缘体异质结构的外延生长和掺杂
- 批准号:
1105839 - 财政年份:2011
- 资助金额:
$ 199.88万 - 项目类别:
Continuing Grant
Selective Doping of Antiferromagnetic Semiconductors
反铁磁半导体的选择性掺杂
- 批准号:
0706359 - 财政年份:2007
- 资助金额:
$ 199.88万 - 项目类别:
Continuing Grant
NER: Exploring Defect Controlled Ferromagnetism in Mn Doped ZnGeP2/GaP Heterojunction
NER:探索锰掺杂 ZnGeP2/GaP 异质结中的缺陷控制铁磁性
- 批准号:
0304621 - 财政年份:2003
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
CAREER: Atomic Processes in Low Temperature Molecular Beam Epitaxy of Diluted Magnetic III/V Compound Semiconductors
职业:稀释磁性 III/V 族化合物半导体的低温分子束外延原子过程
- 批准号:
0094105 - 财政年份:2001
- 资助金额:
$ 199.88万 - 项目类别:
Continuing Grant
SBIR Phase I: Surface Relief Diffractive Optical Elements Based on Photodynamic Azobenzene Functionalized Polymeric Materials
SBIR第一期:基于光动力偶氮苯功能化聚合物材料的表面浮雕衍射光学元件
- 批准号:
9861076 - 财政年份:1999
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
SBIR Phase II: Novel Polymeric Photorefractive Materials for Optical Image Processing
SBIR 第二阶段:用于光学图像处理的新型聚合物光折变材料
- 批准号:
9510017 - 财政年份:1996
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
Novel Polymeric Photorefractive Material for Optical Data Processing
用于光学数据处理的新型聚合物光折变材料
- 批准号:
9361272 - 财政年份:1994
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
- 批准号:
1741618 - 财政年份:2017
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 199.88万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 199.88万 - 项目类别:
Continuing Grant