EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
基本信息
- 批准号:1741618
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, physicists, wave mechanicians and materials scientists will come together to design, fabricate and characterize novel metamaterials with nonreciprocal wave propagation attributes. The field of sound waves, which represent the oldest way of communication between human beings, is experiencing a revival in the context of modern material technology and engineering, with a myriad of applications ranging from medical imaging and echolocation to acoustic cloaking. A fundamental principle governing wave propagation in both fluid and solid media, called "reciprocity", is that the transmission rate of waves must be equal forward and backward between any two arbitrarily selected points in a medium. The ability to break this principle, that is, the realization of one-directional mechanical or acoustic "diodes" will enable the design of new classes of mechanical systems with novel functionalities, including adaptive sensors and vibration isolation devices. It will also provide a transformative contribution to the emerging field of material logic, a design paradigm where simple structural and material modules are used as the engineering building blocks to create mechanical devices of arbitrary complexity. The core conceptual ideas behind the research originate from the notion of "topological protection", which is exploited to obtain wave propagation properties that are robust against disorder and noise. The knowledge developed through this research will advance technologies, including but not limited to: a) mechanical computing, where acoustic logic ports can be seen as building blocks capable of carrying out an array of mathematical operations, and b) devices with novel thermal transport properties, exploiting the analogy between thermal phonons and mechanical vibrations at the spatial and temporal scales of mechanical devices. The research will also be disseminated to the broader community through a workshop with public tutorials, broaden the participation of underrepresented groups in STEM fields through enhancing existing programs at the different academic institutions and will result in YouTube videos to share the discoveries with the general public.This project will develop a fundamental understanding of how the phonon band topology governs the acoustic properties of systems experiencing spatial-temporal modulation, leading to a formal interpretation framework for this type of time-reversal symmetry breaking phenomena. The powerful toolkits to be developed through the project will allow for a rich variety of designs beyond the current boundaries of the use of topological states in acoustic wave control strategies. The research will span frontiers of condensed matter physics, wave mechanics, and materials science. The two main conceptual ideas to be used for the realization of topologically protected nonreciprocal wave propagation are: (1) program the phonon band structure in spatial-temporal modulated materials using principles of topological band theory, and (2) exploit the contrasting wave propagation properties of Maxwell lattices in their metal-like and topological insulator-like phases. The research team will advance the theoretical understanding of the intimate role played by topological protection in nonreciprocal wave propagation, use state-of-the-art fabrication techniques to realize prototypes of acoustic diodes at different scales using a variety of material platforms, and deploy laser-enabled wave reconstruction capabilities to characterize the nonreciprocal wave propagation phenomena in the fabricated metamaterial specimen. By developing and applying principles of topology and material logic design across the scales, the project will transform a set of simple mechanical components into a versatile platform for the next generation acoustic logic ports with programmable acoustic transport and time reversal symmetry breaking capabilities.
在这项研究中,物理学家,波浪级别的人和材料科学家将汇聚在一起设计,捏造和表征具有非注册波浪传播属性的新型超材料。 声波领域代表了人类之间最古老的交流方式,它在现代材料技术和工程的背景下正在复兴,从医学成像和回声分配到声学上的掩饰,都有无数的应用。 流体和固体培养基中的基本原理(称为“互惠”)的基本原理是,波的传输速率必须在任何两个任意选择的点之间在培养基中的任何两个任意选择点之间相等。 破坏这一原理的能力,即实现一方向机械或声学的“二极管”的能力将使具有新功能的新机械系统设计,包括自适应传感器和振动隔离设备。它还将为材料逻辑的新兴领域提供变革性的贡献,该设计范式是一种设计范式,简单的结构和材料模块用作工程构建块,以创建具有任意复杂性的机械设备。 该研究背后的核心概念思想源于“拓扑保护”的概念,该概念被利用以获得可抵抗混乱和噪音的稳定性的波传播特性。通过这项研究获得的知识将推进技术,包括但不限于:a)机械计算,在该技术中,声学逻辑端口可以看作是能够执行一系列数学操作的构件,以及b)具有新型热传输属性的设备,利用了在空间和临时尺度的机械范围内的热声音和机械振动之间的类比,机械尺度和机械尺度的机械范围。 The research will also be disseminated to the broader community through a workshop with public tutorials, broaden the participation of underrepresented groups in STEM fields through enhancing existing programs at the different academic institutions and will result in YouTube videos to share the discoveries with the general public.This project will develop a fundamental understanding of how the phonon band topology governs the acoustic properties of systems experiencing spatial-temporal modulation, leading to a formal这种类型的时间反转对称破坏现象的解释框架。通过该项目开发的强大工具包将允许在声波控制策略中使用拓扑状态的当前界限以外的各种设计。该研究将跨越凝结物理,波浪力学和材料科学的前沿。 用于实现拓扑保护的非转录波传播的两个主要概念思想是:(1)使用拓扑结构理论的原理在时空调制材料中对声子结构进行编程,并且(2)利用麦克斯韦晶格的对比度传播特性在其金属型和拓扑媒介中,并构成对比度的波浪传播特性。 研究团队将提高对拓扑保护在非偏射波传播中扮演的亲密作用的理论理解,使用最先进的制造技术,使用各种材料平台在不同尺度上实现声学二极管的原型,并使用各种启用激光启用激光的波浪重建能力来构造非列表的启动式启动,以进行启动范围。通过在整个尺度上开发和应用拓扑和材料逻辑设计的原理,该项目将将一组简单的机械组件转换为具有可编程的声学传输和时间反向对称性破坏功能的下一代声学逻辑端口的多功能平台。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological Boundary Floppy Modes in Quasicrystals
- DOI:10.1103/physrevx.9.021054
- 发表时间:2018-09
- 期刊:
- 影响因子:12.5
- 作者:Di Zhou;Leyou Zhang;Xiaoming Mao
- 通讯作者:Di Zhou;Leyou Zhang;Xiaoming Mao
Topological insulators and higher-order topological insulators from gauge-invariant one-dimensional lines
- DOI:10.1103/physrevb.102.085108
- 发表时间:2020-04
- 期刊:
- 影响因子:3.7
- 作者:Heqiu Li;K. Sun
- 通讯作者:Heqiu Li;K. Sun
Topologically induced prescrambling and dynamical detection of topological phase transitions at infinite temperature
- DOI:10.1103/physrevb.101.104415
- 发表时间:2020-03-19
- 期刊:
- 影响因子:3.7
- 作者:Dag, Ceren B.;Duan, L-M;Sun, Kai
- 通讯作者:Sun, Kai
Magnetic-Field-Induced Quantum Phase Transitions in a van der Waals Magnet
范德华磁体中磁场诱发的量子相变
- DOI:10.1103/physrevx.10.011075
- 发表时间:2020-03-31
- 期刊:
- 影响因子:12.5
- 作者:Li, Siwen;Ye, Zhipeng;Zhao, Liuyan
- 通讯作者:Zhao, Liuyan
Pfaffian Formalism for Higher-Order Topological Insulators
- DOI:10.1103/physrevlett.124.036401
- 发表时间:2020-01-22
- 期刊:
- 影响因子:8.6
- 作者:Li, Heqiu;Sun, Kai
- 通讯作者:Sun, Kai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming Mao其他文献
Training all-mechanical neural networks for task learning through in situ backpropagation
通过原位反向传播训练用于任务学习的全机械神经网络
- DOI:
10.48550/arxiv.2404.15471 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shuaifeng Li;Xiaoming Mao - 通讯作者:
Xiaoming Mao
Elastic heterogeneity of soft random solids
软随机固体的弹性非均匀性
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiaoming Mao;P. Goldbart;Xiangjun Xing;A. Zippelius - 通讯作者:
A. Zippelius
Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation
简易制备 Sn 掺杂 BiOCl 光催化剂,增强光催化降解苯甲酸和罗丹明 B 的活性
- DOI:
10.1016/j.mssp.2014.07.020 - 发表时间:
2014-11 - 期刊:
- 影响因子:4.1
- 作者:
Fangxia Xie;Xiaoming Mao;Caimei Fan;Yawen Wang - 通讯作者:
Yawen Wang
Robustness of stress focusing in soft lattices under topology-switching deformation
拓扑切换变形下软晶格应力集中的鲁棒性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Caleb Widstrand;Xiaoming Mao;S. Gonella - 通讯作者:
S. Gonella
Soft random solids and their heterogeneous elasticity.
软随机固体及其异质弹性。
- DOI:
10.1103/physreve.80.031140 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xiaoming Mao;P. Goldbart;Xiangjun Xing;A. Zippelius - 通讯作者:
A. Zippelius
Xiaoming Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming Mao', 18)}}的其他基金
Collaborative Research: Unified Field Theory of Soft Amorphous Solids
合作研究:软非晶固体统一场论
- 批准号:
2026825 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Cellular Metamaterials that Localize Stress - Towards a Topological Protection against Fracture
合作研究:局部化应力的细胞超材料——实现拓扑防断裂
- 批准号:
2026794 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Critical Mechanical Structures: Topology and Entropy
关键机械结构:拓扑和熵
- 批准号:
1609051 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
- 批准号:
1741673 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant