RI: Small: Modern Machine Learning Algorithms for Ranking from Pairwise and Higher-Order Comparisons
RI:小型:用于通过成对和高阶比较进行排名的现代机器学习算法
基本信息
- 批准号:1717290
- 负责人:
- 金额:$ 44.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of ranking a large number of items from comparisons among a few items at a time plays a crucial role in many areas, including recommender systems, crowdsourcing, marketing, and econometrics. In modern settings, as the numbers of items to be ranked increase and corresponding datasets grow in size and complexity, it is critical to re-visit the classical algorithms currently used for these problems and to design new algorithms that can better scale to modern needs under fewer assumptions. This project will design modern machine learning algorithms for such problems, while training PhD students and postdoctoral scientists in the interdisciplinary skills needed to design novel machine learning algorithms for problems involving modern datasets. Other broader impacts of the project will also include organization of workshops and/or tutorials to disseminate the results of the research conducted here, survey articles aimed at conveying the ideas to a broad scientific audience, and activities designed to increase participation of under-represented groups in STEM education opportunities and careers. The problem of ranking from pairwise comparisons has been studied in several fields, including statistics, operations research, social choice, and computer science, and several algorithms have been developed; however, very little has been understood in terms of how these different algorithms relate to each other, under what conditions they succeed (or fail), and how insights from one can be used to improve another. Algorithms for ranking from higher-order comparisons are even less well understood. The project will develop a strong understanding of the conditions under which various pairwise ranking algorithms succeed (or fail), and use insights from this understanding to develop modern machine learning algorithms with strong performance guarantees for ranking from pairwise as well as higher-order comparisons. Specifically, the project will investigate the following three directions: (1) Understanding conditions on pairwise models under which current algorithms succeed or fail.(2) Design of new machine learning algorithms for ranking from pairwise comparisons.(3) Ranking from higher-order comparisons.The project will bring a unified perspective to the study of ranking from pairwise comparisons, which hitherto has been scattered across different disciplines; develop new machine learning algorithms that improve the state of the art for a variety of ranking objectives; and initiate a systematic study of ranking from higher-order comparisons, a nascent area at the intersection of machine learning, statistics and econometrics.
通过一次几个项目的比较对大量项目进行排名的问题在许多领域发挥着至关重要的作用,包括推荐系统、众包、营销和计量经济学。在现代环境中,随着要排序的项目数量的增加以及相应数据集的大小和复杂性的增加,重新审视当前用于这些问题的经典算法并设计能够更好地满足现代需求的新算法至关重要更少的假设。该项目将为此类问题设计现代机器学习算法,同时培训博士生和博士后科学家为涉及现代数据集的问题设计新颖的机器学习算法所需的跨学科技能。该项目的其他更广泛的影响还包括组织研讨会和/或教程来传播这里进行的研究结果,旨在向广大科学受众传达想法的调查文章,以及旨在增加代表性不足群体参与的活动STEM 教育机会和职业。成对比较的排序问题已在多个领域进行了研究,包括统计学、运筹学、社会选择和计算机科学,并开发了多种算法;然而,人们对这些不同算法如何相互关联、它们在什么条件下成功(或失败)以及如何利用一种算法的见解来改进另一种算法的了解知之甚少。通过高阶比较进行排序的算法甚至更不为人所知。该项目将深入了解各种成对排序算法成功(或失败)的条件,并利用这种理解中的见解来开发现代机器学习算法,为成对排序和高阶比较排序提供强大的性能保证。具体来说,该项目将研究以下三个方向:(1)了解当前算法成功或失败的成对模型条件。(2)设计新的机器学习算法,用于通过成对比较进行排序。(3)从高阶排序该项目将为成对比较的排名研究带来统一的视角,迄今为止这种研究分散在不同的学科中;开发新的机器学习算法,提高各种排名目标的技术水平;并启动对高阶比较排名的系统研究,这是机器学习、统计学和计量经济学交叉领域的一个新兴领域。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank Aggregation from Pairwise Comparisons in the Presence of Adversarial Corruptions
在存在对抗性腐败的情况下,通过两两比较进行排名聚合
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Agarwal, Shivani;Khanna, Sanjeev;Patil, Prathamesh
- 通讯作者:Patil, Prathamesh
Accelerated Spectral Ranking
加速光谱排名
- DOI:
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Patil, Prathamesh;Agarwal, Shivani
- 通讯作者:Agarwal, Shivani
Bayes Consistency vs. H-Consistency: The Interplay between Surrogate Loss Functions and the Scoring Function Class
贝叶斯一致性与 H 一致性:代理损失函数和评分函数类之间的相互作用
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Zhang, M;Agarwal, S
- 通讯作者:Agarwal, S
Accelerated Spectral Ranking
加速光谱排名
- DOI:
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Patil, Prathamesh;Agarwal, Shivani
- 通讯作者:Agarwal, Shivani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shivani Agarwal其他文献
Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila.
嗜水气单胞菌单体 UDP-半乳糖 4-差向异构酶的活性位点和辅酶结合袋的表征。
- DOI:
10.5483/bmbrep.2010.43.6.419 - 发表时间:
2010-06-30 - 期刊:
- 影响因子:3.8
- 作者:
Shivani Agarwal;N. Mishra;Shivangi Agarwal;A. Dixit - 通讯作者:
A. Dixit
Nitrogen-Based Hydrogen Storage Systems: A Detailed Overview
氮基储氢系统:详细概述
- DOI:
10.1002/9781119460572.ch2 - 发表时间:
2018-08-06 - 期刊:
- 影响因子:0
- 作者:
Ankur Jain;T. Ichikawa;Shivani Agarwal - 通讯作者:
Shivani Agarwal
Human Leaders and Artificial Intelligent Leaders
人类领导者和人工智能领导者
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shivani Agarwal - 通讯作者:
Shivani Agarwal
ROUTE-T1D: A behavioral intervention to promote optimal continuous glucose monitor use among racially minoritized youth with type 1 diabetes: Design and development.
ROUTE-T1D:一种行为干预,以促进患有 1 型糖尿病的少数族裔青少年最佳使用连续血糖监测仪:设计和开发。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.2
- 作者:
Emma Straton;Breana L. Bryant;Leyi Kang;Christine H. Wang;John Barber;A. Perkins;Letitia Gallant;B. Marks;Shivani Agarwal;S. Majidi;Maureen Monaghan;R. Streisand - 通讯作者:
R. Streisand
Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer
棕榈酰酰基转移酶 ZDHHC7 抑制雄激素受体并抑制前列腺癌
- DOI:
10.1038/s41388-023-02718-2 - 发表时间:
2023-05-17 - 期刊:
- 影响因子:8
- 作者:
Zhuoyuan Lin;Shivani Agarwal;Song Tan;Hongshun Shi;Xiaodong Lu;Z. Tao;Xuesen Dong;Xu Wu;Jonathan C. Zhao;Jindan Yu - 通讯作者:
Jindan Yu
Shivani Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shivani Agarwal', 18)}}的其他基金
HDR TRIPODS: Penn Institute for Foundations of Data Science
HDR TRIPODS:宾夕法尼亚大学数据科学研究所
- 批准号:
1934876 - 财政年份:2019
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖现代 HPC 系统的地图应用程序的 K-Way 推测
- 批准号:
2334273 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Beat Modern Virtualization Obfuscation at Their Own Game: A Bottom-Up Deobfuscation Approach
SaTC:核心:小型:在自己的游戏中击败现代虚拟化混淆:自下而上的反混淆方法
- 批准号:
2211905 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant