Collapse Simulation of Shear-Dominated Reinforced Masonry Wall Systems

剪力主导的钢筋砌体墙系统的倒塌模拟

基本信息

  • 批准号:
    1728685
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Reinforced masonry (RM) wall structures subjected to severe seismic forces can develop complicated nonlinear behavior involving interaction between steel and masonry, which have distinctly different mechanical properties. Furthermore, in a building system, the interaction of structural walls with other elements, such as walls that are oriented in a different direction, columns carrying gravity loads, beams, and floor slabs, could lead to nonlinear behavior and collapse mechanisms that were not anticipated in design. The ability of analytical models to capture these mechanisms and interactions is essential to have an accurate assessment of a building's collapse potential. While advanced analytical models have been developed to simulate the damage mechanisms and nonlinear behavior of RM structures, their ability to capture the material and component interactions in a structural system on the verge of collapse has not been validated due to the lack of experimental data. This research will obtain necessary experimental data to understand the behavior of RM wall structures up to the point of collapse, and then will use the data to advance and validate analytical modeling capabilities. The data acquired and analytical tools developed in this project will help advance seismic performance assessment methods, resulting in safer and more cost-efficient RM buildings, and will also benefit the design of reinforced concrete wall systems, which have similar behavior. The project team, consisting of the Principal Investigator, one doctoral student, and undergraduate research assistants, will carry out model development, numerical simulation, large-scale experimental testing, and data analysis to achieve the aforementioned goals, as well as disseminate the research results and analytical tools for use in future research, education, and engineering practice. Experimental data from this project will be archived and made available in the NSF-supported NHERI Data Depot (http://www.designsafe-ci.org). Finite element models from this project will be shared with the NSF-supported NHERI Computational Modeling and Simulation Center for implementation with their software. The project team will also collaborate with the NSF-supported NHERI DesignSafe cyberinfrastructure team to develop a simple user interface for the computational models developed for a few archetype buildings that can be used by middle and high-school students to study the influence of different design variables, such as the amount of vertical and horizontal reinforcement, and the strengths of the materials, on the seismic performance and the risk of collapse of RM structures.The main aim of this research is to advance physics-based computational models to capture the nonlinear behavior of RM wall systems up to the point of collapse, accounting for the influence of material and component interactions on the system-level behavior, and to develop large-scale simulations to assess the collapse margin ratios of RM wall systems. To this end, large-scale laboratory testing will be conducted to acquire a better understanding of the behavior of RM wall systems on the verge of collapse, and to calibrate and validate analytical models. The experimental and numerical studies will quantify: (1) the influence of wall flanges on the shear strength and ductility of RM walls, (2) the influence of the coupling forces introduced by horizontal diaphragms in a structural system on the strength and deformation capability of the system, and (3) the influence of non-seismic load carrying walls and columns on collapse resistance. In the experimental program, two to three one-story, full-scale, RM wall systems will be tested to collapse using the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) outdoor shake table at the University of California, San Diego. These wall systems will have different levels of complexity to identify the influence of non-seismic load carrying elements on the collapse resistance of a wall system. Once validated by experimental data, refined physics-based models will be used in a parametric study to understand the influence of different design variables and structural configurations on the collapse potential of RM buildings under bi-directional earthquake ground motions. The variables will include wall spacing and configurations, the strength and stiffness of horizontal diaphragms, horizontal diaphragm-to-wall connections, and the presence or absence of gravity columns. Moreover, the ability of simplified analytical models to assess the collapse margin ratios of RM buildings with incremental dynamic analysis will be assessed.
承受剧烈地震力的钢筋砌体(RM)墙结构会产生复杂的非线性行为,涉及钢材和砖石之间的相互作用,而它们具有明显不同的力学性能。此外,在建筑系统中,结构墙与其他元素(例如不同方向的墙、承载重力荷载的柱、梁和楼板)的相互作用可能会导致无法预料的非线性行为和倒塌机制在设计中。分析模型捕捉这些机制和相互作用的能力对于准确评估建筑物倒塌的可能性至关重要。尽管已经开发出先进的分析模型来模拟 RM 结构的损伤机制和非线性行为,但由于缺乏实验数据,它们捕捉结构系统中濒临倒塌的材料和组件相互作用的能力尚未得到验证。这项研究将获得必要的实验数据,以了解 RM 墙结构直至倒塌点的行为,然后使用这些数据来推进和验证分析建模能力。该项目中获取的数据和开发的分析工具将有助于推进抗震性能评估方法,从而使 RM 建筑更安全、更具成本效益,并且还将有利于具有类似行为的钢筋混凝土墙体系统的设计。项目团队由首席研究员、一名博士生和本科生研究助理组成,将为实现上述目标进行模型开发、数值模拟、大规模实验测试和数据分析,并推广研究成果以及用于未来研究、教育和工程实践的分析工具。 该项目的实验数据将存档并在 NSF 支持的 NHERI 数据仓库 (http://www.designsafe-ci.org) 中提供。该项目的有限元模型将与 NSF 支持的 NHERI 计算建模和仿真中心共享,以便通过其软件实施。该项目团队还将与 NSF 支持的 NHERI DesignSafe 网络基础设施团队合作,为一些原型建筑开发的计算模型开发一个简单的用户界面,可供中学生和高中生研究不同设计变量的影响,例如垂直和水平钢筋的数量以及材料的强度,对 RM 结构的抗震性能和倒塌风险的影响。这项研究的主要目的是推进基于物理的计算模型来捕获非线性行为RM 墙体系统数量高达塌陷点,考虑材料和组件相互作用对系统级行为的影响,并开发大规模模拟来评估 RM 墙系统的塌陷裕度比率。为此,将进行大规模实验室测试,以更好地了解 RM 墙系统在倒塌边缘的行为,并校准和验证分析模型。实验和数值研究将量化:(1)墙翼缘对 RM 墙的抗剪强度和延性的影响,(2)结构系统中水平隔板引入的耦合力对 RM 墙的强度和变形能力的影响(3)非地震承重墙和柱对抗倒塌能力的影响。在实验项目中,将使用美国国家科学基金会 (NSF) 支持的自然灾害工程研究基础设施 (NHERI) 位于加州大学圣地亚哥分校的户外振动台,对两到三个单层全尺寸 RM 墙体系统进行倒塌测试。这些墙体系统将具有不同程度的复杂性,以识别非地震承载元件对墙体系统抗倒塌能力的影响。一旦通过实验数据验证,精细的基于物理的模型将用于参数研究,以了解不同设计变量和结构配置对双向地震地面运动下 RM 建筑物倒塌可能性的影响。这些变量包括墙间距和配置、水平隔板的强度和刚度、水平隔板与墙的连接以及重力柱的存在或不存在。此外,还将评估简化分析模型通过增量动态分析评估 RM 建筑物倒塌裕度比率的能力。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of collapse resistance of reinforced masonry wall systems by shake‐table tests
通过振动台试验评价加筋砌体墙系统的抗倒塌性能
A Shake-table Test Investigating the Drift Capacity of Reinforced Masonry Wall Systems
研究钢筋砌体墙系统的位移能力的振动台试验
A Shake-Table Test Investigating the Drift Capacity of Reinforced MasonryWall Systems
研究钢筋砌体墙系统的漂移能力的振动台试验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

P. Benson Shing其他文献

Aspects of bridge‐ground seismic response and liquefaction‐induced deformations
桥梁地面地震响应和液化引起的变形
  • DOI:
    10.1002/eqe.3244
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Z. Qiu;A. Ebeido;Abdullah Almutairi;Jinchi Lu;A. Elgamal;P. Benson Shing;G. Martin
  • 通讯作者:
    G. Martin

P. Benson Shing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('P. Benson Shing', 18)}}的其他基金

NEESR: Seismic Performance and Design of Partially-Grouted Reinforced Masonry Buildings
NEESR:部分灌浆钢筋砌体建筑的抗震性能和设计
  • 批准号:
    1208208
  • 财政年份:
    2012
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Behavior of Braced Steel Frames With Innovative Bracing Schemes - A NEES Collaboratory Project
合作研究:采用创新支撑方案的支撑钢框架的行为 - NEES 合作项目
  • 批准号:
    0639997
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
NEESR-SG: Seismic Performance Assessment and Retrofit of Non-Ductile RC Frames with Infill Walls
NEESR-SG:带填充墙的非延性 RC 框架的抗震性能评估和改造
  • 批准号:
    0530709
  • 财政年份:
    2005
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Behavior of Braced Steel Frames With Innovative Bracing Schemes - A NEES Collaboratory Project
合作研究:采用创新支撑方案的支撑钢框架的行为 - NEES 合作项目
  • 批准号:
    0324468
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Fast Hybrid Test Platform for Seismic Performance Evaluation of Structural Systems
用于结构系统抗震性能评估的快速混合测试平台
  • 批准号:
    0086592
  • 财政年份:
    2001
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Cooperative Agreement
U.S.-Japan Joint Seminar: Post Peak Shear Failure of RC Piers Subjected to Cyclic Loading
美日联合研讨会:循环荷载作用下钢筋混凝土墩峰后剪切破坏
  • 批准号:
    9815558
  • 财政年份:
    1999
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Development of an Embedded Crack Method for the Shear Behavior of Reinforced Concrete Structures
钢筋混凝土结构剪切行为嵌入裂纹方法的开发
  • 批准号:
    9731255
  • 财政年份:
    1998
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Performance of Reinforced Concrete Bridge Piers During the 1995 Hyogoken-Nanbu Earthquake
1995 年兵库县南部地震期间钢筋混凝土桥墩的性能
  • 批准号:
    9622940
  • 财政年份:
    1996
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Development of Adaptive Hybrid Control Techniques for Building Structures
建筑结构自适应混合控制技术的发展
  • 批准号:
    9201962
  • 财政年份:
    1992
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
U.S. - Italy Masonry Research - Joint with Atkinson-Noland and Associates
美国 - 意大利砖石研究 - 与 Atkinson-Noland and Associates 联合
  • 批准号:
    9017149
  • 财政年份:
    1991
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

土工袋堆叠体剪切特性的宏细观机制与本构模拟
  • 批准号:
    52308349
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深层地热开发裂隙剪切与压溶联合作用机理及数值模拟研究
  • 批准号:
    42372300
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
模拟失重通过LINC复合体调控m6A介导的HDAC6 pre-mRNA剪切抑制骨微血管内皮细胞增殖的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于P-T-t-D-shear sense轨迹和数值模拟探讨羌塘中部冈玛错-拉雄错地区高压变质岩的折返机制
  • 批准号:
    42172259
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
泥质粉砂型深海能源土剪切-渗流耦合特性及其本构模拟与应用研究
  • 批准号:
    12172187
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Towards Personalized Prosthetic Graft Replacement for Genetically Triggered Thoracic Aortic Aneurysms
针对基因触发的胸主动脉瘤的个性化假体移植
  • 批准号:
    10753115
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
  • 批准号:
    10810399
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
Shear Wave Reciprocity for Breast Imaging
乳房成像的剪切波互易性
  • 批准号:
    10722721
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
  • 批准号:
    10461534
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了