A Fundamental Framework for the Robust Stabilization of Gas Turbine Combustion Instability

燃气轮机燃烧不稳定性鲁棒稳定的基本框架

基本信息

项目摘要

This project addresses the challenge of actively controlling unstable pressure oscillations occurring in combustion systems. While the research focuses on gas turbines applications it can have impact on other combustion devices like industrial process furnaces and boilers. For all of these systems, there is a strong societal push to improve combustion efficiency, reduce harmful emissions such as nitrogen oxides, and accommodate variations in consumer power demand. The work of this project will drive improvements in combustion system stability, reliability, durability, and emissions. These improvements will be especially valuable for the stationary gas turbines providing reserve generation capacity to the power grid. Achieving these goals of high efficiency and low emissions often involves operating closer to combustion instability. Unstable combustion can be disruptive and physically damaging, and is triggered when the dynamics of heat release, fluid mechanics, and acoustic wave propagation are mutually reinforcing. There is a rich existing literature that provides insights into the physics behind combustion instability, and also shows that active control can mitigate this instability. However, many of the control strategies over-simplify the modeled dynamics and do not take advantage of advanced control strategies and consequently prevent active combustion stability control from having a practical/industrial impact commensurate with previous laboratory research successes. This project will lead to novel formulations for mathematically describing the combustion phenomena and innovative ways to control instabilities occurring during the combustion process with experimental validation. The research plan includes the participation of both undergraduate and graduate students through a unique multi-disciplinary training opportunity. An undergraduate-level laboratory experiment will be developed from this work, providing a large number of undergraduate engineering students with the opportunity to apply nonlinear control theory to critical power technologies.This work will furnish a novel fundamental framework for robust, multivariable, combined passive/active combustion stabilization during both steady-state and transient operation, and validate it using a flexible laboratory combustion rig. The framework will utilize nonlinear model reduction to develop control-oriented, reduced models of combustion instability that include more accurate physics, validated using experiments. Further, it will analyze the degree to which combustion modeling and parameterization uncertainties can penalize the performance, stability, and robustness of model-based combustion control. The framework utilizes robust, multivariable control theory to design combustion control algorithms capable of exploiting multiple sensors and actuators. Nonlinear model predictive control will stabilize combustion dynamics not just around a particular operating condition, but also during transient switching between operating conditions. Finally, the research will exploit combined design/control optimization to develop passive combustor designs inherently conducive to active stabilization. The broader impacts of this work will reach the technical community, industry, and students at both the graduate and undergraduate level. The technical progress made in this work will demonstrate the use of robust, multivariable control theory for both instability control and design of better combustor systems. The potential for improving combustor design can be translated to industrial use and gas turbine combustor design.
该项目解决了主动控制燃烧系统中发生的不稳定压力振荡的挑战。虽然该研究重点关注燃气轮机应用,但它可能会对工业流程炉和锅炉等其他燃烧设备产生影响。对于所有这些系统,社会都在大力推动提高燃烧效率、减少氮氧化物等有害排放,并适应消费者电力需求的变化。该项目的工作将推动燃烧系统稳定性、可靠性、耐用性和排放的改善。这些改进对于为电网提供备用发电能力的固定式燃气轮机尤其有价值。实现这些高效率和低排放的目标通常需要在接近燃烧不稳定的情况下运行。不稳定燃烧可能具有破坏性和物理破坏性,当放热动力学、流体力学和声波传播相互增强时就会触发不稳定燃烧。有丰富的现有文献提供了对燃烧不稳定性背后的物理原理的见解,并且还表明主动控制可以减轻这种不稳定性。然而,许多控制策略过度简化了建模动力学,并且没有利用先进的控制策略,从而阻碍了主动燃烧稳定性控制产生与先前实验室研究成功相称的实际/工业影响。该项目将产生用于数学描述燃烧现象的新颖公式,以及通过实验验证控制燃烧过程中发生的不稳定性的创新方法。该研究计划包括本科生和研究生通过独特的多学科培训机会参与。这项工作将开发一个本科生水平的实验室实验,为大量工程本科生提供将非线性控制理论应用于关键功率技术的机会。这项工作将为鲁棒、多变量、组合无源/在稳态和瞬态运行期间主动燃烧稳定性,并使用灵活的实验室燃烧装置进行验证。该框架将利用非线性模型简化来开发面向控制的燃烧不稳定性简化模型,其中包括更准确的物理原理,并通过实验进行验证。此外,还将分析燃烧建模和参数化不确定性对基于模型的燃烧控制的性能、稳定性和鲁棒性的影响程度。该框架利用稳健的多变量控制理论来设计能够利用多个传感器和执行器的燃烧控制算法。非线性模型预测控制不仅可以在特定操作条件下稳定燃烧动态,而且可以在操作条件之间的瞬态切换期间稳定燃烧动态。最后,该研究将利用组合设计/控制优化来开发本质上有利于主动稳定的被动燃烧器设计。这项工作将产生更广泛的影响,影响到技术社区​​、行业以及研究生和本科生。这项工作取得的技术进步将展示稳健的多变量控制理论在不稳定性控制和更好的燃烧器系统设计中的应用。改进燃烧器设计的潜力可以转化为工业用途和燃气轮机燃烧器设计。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimizing Thermoacoustic Characterization Experiments for Identifiability Improves Both Parameter Estimation Accuracy and Closed-Loop Controller Robustness Guarantees
优化热声表征实验以提高可识别性,提高参数估计精度和闭环控制器鲁棒性保证
  • DOI:
    10.1080/00102202.2020.1858818
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Chen, Xiaoling;O’Connor, Jacqueline;Fathy, Hosam
  • 通讯作者:
    Fathy, Hosam
Optimizing the Design of a Rijke Tube Experiment for Combustion Stability Model Identifiability
优化燃烧稳定性模型可辨识性的 Rijke 管实验设计
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Xiaoling;Dillen, Evan;Fathy, Hosam;O'Connor, Jacqueline
  • 通讯作者:
    O'Connor, Jacqueline
Impact of Sensor Placement on Mode Observability and LQG Control of a Thermoacoustic System
传感器放置对热声系统模式可观测性和 LQG 控制的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Xiaoling;Fathy, Hosam;O'Connor, Jacqueline
  • 通讯作者:
    O'Connor, Jacqueline
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacqueline O'Connor其他文献

Jacqueline O'Connor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacqueline O'Connor', 18)}}的其他基金

REU Site: Lowering the Carbon Footprint through Research in Propulsion and Power Generation
REU 网站:通过推进和发电研究降低碳足迹
  • 批准号:
    2149667
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Combustion Behavior of Hydrochars from Wet Biomass
合作研究:湿生物质中水炭的燃烧行为
  • 批准号:
    2031710
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Support for Workshop and Mentoring of Junior Researchers at the US National Combustion Meeting
支持美国国家燃烧会议上的初级研究人员的研讨会和指导
  • 批准号:
    1901570
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Impact of Turbulence on Mechanisms of Combustion Instability
职业:湍流对燃烧不稳定机制的影响
  • 批准号:
    1749679
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
金属有机框架对M-Nx基PEMFCs阴极催化层的多重调控机制研究
  • 批准号:
    22375017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多孔框架材料复合膜用于水同位素体分离
  • 批准号:
    22305016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于新框架土壤生物促进或抑制外来植物入侵发生条件和机制研究
  • 批准号:
    32371749
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
被动轴向约束作用下框架梁抗震机理与设计方法
  • 批准号:
    52378515
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

WickedSchisto: Developing an robust interdisciplinary-informed WASH framework for the wicked public-health problem of schistosomiasis
WickedSchisto:针对血吸虫病这一邪恶的公共卫生问题,开发一个强大的跨学科 WASH 框架
  • 批准号:
    EP/X027082/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
  • 批准号:
    10654115
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
NAVIGATE Kidney: A Multi-Level Intervention to Reduce Kidney Health Disparities
NAVIGATE Kidney:减少肾脏健康差异的多层次干预措施
  • 批准号:
    10742130
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Palliative Care as a Parkinson's Disease Standard of Care
姑息治疗作为帕金森病的护理标准
  • 批准号:
    10753418
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
  • 批准号:
    10068410
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了