A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
基本信息
- 批准号:10068410
- 负责人:
- 金额:$ 6.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lung cancer is a leading cause of death worldwide, with non-small cell lung cancer (NSCLC) accounting for up to 85% of all cases and overall a 5-year survival rate of 17.8%. Both early detection and targeted patient-specific therapies of NSCLC are crucial to improve patient survival. As the amount of healthcare data is continuously growing, the diagnosis and treatment of lung cancer can be improved by identifying biomarkers which can be used to identify patients with an increased risk to develop the disease or which require a different type of therapy. Recently, an increasing number of machine learning approaches have been developed to facilitate the identification of such risk-factors.However, data like proteomics and electronic health records are very challenging to work with as the data is high dimensional, noisy, and contain various sources of data bias.Additionally, it requires a deep understanding of the clinical and biological domain to interpret results correctly.In this project we aim to develop a ML pipeline to identify trustworthy medical risk factors and biomarkers in NSCLC. Given the nature of the data and the complexity within the domain, we propose a robust, explainable, and human-centred approach. On the one side, we want to reduce the impact of noise and known data bias, by making the used ML analysis more robust. On the other side, we want to simplify the evaluation of results for clinical experts by increasing the explainability of any given analysis and by providing them with tools to include their domain knowledge.We believe that techniques developed within this project can easily be applied to other disease areas and will accelerate the development of personalised medicine.
肺癌是全球死亡的主要原因,非小细胞肺癌(NSCLC)占所有病例的85%,总体5年生存率为17.8%。 NSCLC的早期检测和针对性的患者特异性疗法对于改善患者生存至关重要。随着医疗保健数据的量不断增长,可以通过识别可用于鉴定出患有增加风险患者或需要不同类型治疗的患者的生物标志物来改善肺癌的诊断和治疗。最近,已经开发出越来越多的机器学习方法来促进这种风险因素的识别。但是,由于数据具有高维度,嘈杂性,并且包含各种数据源,并且在此方面,蛋白质组学和电子健康记录诸如蛋白质组学和电子健康记录非常具有挑战性。 NSCLC的危险因素和生物标志物。鉴于数据的性质和域内的复杂性,我们提出了一种健壮,可解释和以人为中心的方法。一方面,我们希望通过使使用的ML分析更强大,以减少噪声和已知数据偏差的影响。另一方面,我们希望通过提高任何给定分析的解释性并为它们提供包括其领域知识的工具来简化临床专家的结果评估。我们相信,在该项目中开发的技术可以轻松地应用于其他疾病领域,并会促进个性化医学的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:10.1038/s41598-023-40425-w10.1038/s41598-023-40425-w
- 发表时间:2023-08-162023-08-16
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:10.1007/s00392-023-02181-910.1007/s00392-023-02181-9
- 发表时间:2024-012024-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:10.1038/cddis.2011.5910.1038/cddis.2011.59
- 发表时间:2011-06-232011-06-23
- 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:10.3389/fimmu.2022.90226010.3389/fimmu.2022.902260
- 发表时间:20222022
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:10.3390/ijms2310567510.3390/ijms23105675
- 发表时间:2022-05-182022-05-18
- 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
共 3349423 条
- 1
- 2
- 3
- 4
- 5
- 6
- 669885
的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:29019542901954
- 财政年份:2028
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:28960972896097
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:27802682780268
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:29089182908918
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:29086932908693
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:29089172908917
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:28794382879438
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:28905132890513
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:28798652879865
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:28769932876993
- 财政年份:2027
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:StudentshipStudentship
相似国自然基金
基于多模态磁共振和机器学习的精神病理学层级框架及跨诊断应用研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
机器学习辅助高通量筛选金属有机框架用于铯、锶结晶化分离
- 批准号:22176135
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于多模态磁共振和机器学习的精神病理学层级框架及跨诊断应用研究
- 批准号:82171543
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
基于巴拿赫空间框架的稀疏正则化及其在机器学习中的应用
- 批准号:11971216
- 批准年份:2019
- 资助金额:52 万元
- 项目类别:面上项目
无服务器架构机器学习的计算模型与系统框架研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:23470352347035
- 财政年份:2024
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:Standard GrantStandard Grant
An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
- 批准号:23211912321191
- 财政年份:2024
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:Standard GrantStandard Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:23396862339686
- 财政年份:2024
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:Continuing GrantContinuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:23410552341055
- 财政年份:2024
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:Continuing GrantContinuing Grant
A Machine Learning Framework for Concrete Workability Estimation
用于混凝土和易性评估的机器学习框架
- 批准号:LP220100390LP220100390
- 财政年份:2024
- 资助金额:$ 6.37万$ 6.37万
- 项目类别:Linkage ProjectsLinkage Projects