An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
基本信息
- 批准号:2321191
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by developing explanatory machine learning methods for the study of teaching effectiveness in STEM education. There is consistent evidence that teachers vary widely in their effectiveness but conventional analytic methods have largely failed to explain why and under what contexts teaching and teachers vary. Explanatory machine learning methods hold significant potential in developing fundamental knowledge and theories of equitable and effective STEM teaching because they can track complex features, processes and patterns inherent in and implied by theories of teaching in ways where conventional methods fall short. In this project, we examine the extent to which we can leverage machine learning methods to identify and explain profiles, pathways and practices (e.g., who teachers are, what teachers know, what teachers believe, perceive and experience, what teachers do) that produce student learning and how these profiles and practices vary across STEM education contexts. The outcomes of this project have the potential to accelerate research on the theory and practice of effective teaching, teacher preparation, teacher development and student learning. This is a three-year BCSER: Individual Investigator Development project in STEM Education Research within Research on STEM Learning and Learning Environments.The fields of STEM education and teacher development have made substantial progress in developing sophisticated theories of teaching and learning and instruments and measures that support and operationalize research on those theories (e.g., teacher knowledge, culturally responsive teacher self-efficacy, classroom observations). Recent literature has, however, noted that there is a mismatch between the complexity found in our theories of effective teachers and teaching and the prevailing methods we use to analyze those theories. For example, theories suggest that teaching is a highly interactive, adaptive, nonlinear and context-dependent practice; yet the field has almost exclusively drawn on simple linear regression models that cannot readily detect and analyze these complex patterns. There is a growing recognition of the need to craft, develop and grow methodologies specific to the purposes of STEM teaching and learning research. This project aims to fill this gap by developing and adapting explanatory machine learning methods (e.g., neural networks) to analyze studies of teaching effectiveness and examining the extent to which these methods can predict, explain and contextualize effective teaching in ways that outperform conventional methods. The results have the potential to broadly build capacity and impact the field by identifying complex features and profiles of effective teaching within and across contexts and developing scalable machine learning methods that are broadly applicable to STEM education studies. This project is supported through a partnership with the Bill & Melinda Gates Foundation, Schmidt Futures, and the Walton Family Foundation. This project is also supported by NSF's EDU Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigators' capacity to carry out high-quality STEM education research in the core areas of STEM learning and learning environments, broadening participation in STEM fields, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发解释性机器学习方法来研究STEM教育中的教学效率。有一致的证据表明,教师的有效性差异很大,但是传统的分析方法在很大程度上未能解释为什么以及在哪些背景下教学和教师的不同。解释性的机器学习方法在开发公平和有效的STEM教学的基本知识和理论方面具有巨大的潜力,因为它们可以跟踪复杂的特征,过程和模式在教学理论中固有的,并以传统方法不足的方式跟踪。在这个项目中,我们研究了我们可以利用机器学习方法来识别和解释概况,路径和实践(例如,老师是谁,老师知道的,老师的信仰,感知和经验,老师的工作)以及这些概况以及这些个人资料和实践如何在STEM教育环境中变化。该项目的结果有可能加快对有效教学,教师准备,教师发展和学生学习的理论和实践的研究。这是一项为期三年的BCSER:STEM教育研究中的STEM教育研究中的个人研究者发展项目。STEM教育和教师发展领域在开发有关教学,学习和工具和工具和措施的复杂理论方面取得了重大进展,这些理论支持这些理论的研究和运营研究(例如,教师知识,教师知识,教师自我效能学教师自我效能学,课堂观察,课堂观察)。然而,最近的文献指出,在我们有效的教师理论和教学理论中发现的复杂性与我们用来分析这些理论的普遍方法之间存在不匹配。例如,理论表明教学是一种高度互动,适应性,非线性和上下文依赖性实践。然而,该领域几乎只借鉴了简单的线性回归模型,这些模型无法轻易检测和分析这些复杂模式。人们越来越认识到需要针对STEM教学研究目的而制造,发展和发展方法论的必要性。该项目旨在通过开发和调整解释性机器学习方法(例如神经网络)来分析教学效果的研究并检查这些方法可以在多大程度上以优于常规方法来预测,解释和上下文化有效的教学的程度。结果有可能通过确定在环境内和环境中的有效教学以及开发可扩展的机器学习方法,这些方法广泛地适用于STEM教育研究。该项目通过与Bill&Melinda Gates Foundation,Schmidt Futures和Walton Family Foundation的合作伙伴关系得到支持。 该项目还得到了NSF的STEM教育研究(ECR:BCSER)计划中的EDU核心研究建设能力,该计划旨在建立研究人员在STEM学习和学习环境的核心领域进行高质量的STEM教育研究的能力,从而扩大了STEM领域的参与,并扩大了STEM领域的参与,并扩大了STEM劳动力的发展。审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Kelcey其他文献
The contributors to dosage calculation ability and its applicability to nursing education: An integrative review.
剂量计算能力的贡献者及其对护理教育的适用性:综合评价。
- DOI:
10.1016/j.profnurs.2023.10.006 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Jessica Westman;Kimberly D. Johnson;Carolyn R Smith;Benjamin Kelcey - 通讯作者:
Benjamin Kelcey
Educational preparedness and perceived importance on confidence in new graduate registered nurses' medication administration
教育准备和对新毕业注册护士用药管理信心的认知重要性
- DOI:
10.1016/j.profnurs.2024.06.008 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Jessica Westman;Kimberly D. Johnson;Carolyn R Smith;Benjamin Kelcey - 通讯作者:
Benjamin Kelcey
Benjamin Kelcey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Kelcey', 18)}}的其他基金
Designing Multisite Mediation Studies to Track Teacher Development Processes in Mathematics
设计多站点中介研究来跟踪教师数学发展过程
- 批准号:
1760884 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics
职业:多层次中介模型研究教师发展对学生数学成绩的影响
- 批准号:
1552535 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Power Analyses for Moderator and Mediator Effects in Cluster Randomized Trials
协作研究:集群随机试验中调节剂和中介效应的功效分析
- 批准号:
1437679 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Empirical Benchmarks of Design Parameters for Group Randomized Trials in Teacher Professional Development Intervention Studies
教师专业发展干预研究中分组随机试验设计参数的实证基准
- 批准号:
1405601 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Empirical Benchmarks of Design Parameters for Group Randomized Trials in Teacher Professional Development Intervention Studies
教师专业发展干预研究中分组随机试验设计参数的实证基准
- 批准号:
1228490 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
病证结合视角下基于可解释性机器学习的溃疡性结肠炎复发预测研究
- 批准号:82374623
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
基于样本迁移和可解释性机器学习的草本湿地植物群落分类研究
- 批准号:42301429
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于信息流理论与可解释性机器学习的北方岩溶泉水流量动态变化机理研究
- 批准号:42307088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于可解释性机器学习的城市易涝性评价与孕灾机理解析
- 批准号:52309005
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
主播表现对带货效果的影响——可解释和可视化的多模态机器学习
- 批准号:72302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant